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Today’s lecture

The goal for today’s lecture is to discuss how some applications/algorithms for

quantum computers work and can be implemented.

We will discuss the following topics:

• Shor’s Algorithm

Modular arithmetics Quantum Phase Estimation RSA Basics

Classical Factorization Period Estimation (QFT)

• Post Quantum Cryptography

• Concluding remarks

Material based on Xanadu’s codebook and

PennyLane documentation.

Please stop me if you have any questions or doubts.
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Shor’s Algorihtm



Shor’s Algorithm

• One of the most famous algorithms in quantum computing.

• Originally developed in 1994 by Peter Shor, way before a QC was even on a blue

print.

• It is a QC algorithm for finding the prime factors of an integer.

• It mixes classical and quantum procedures to solve the problem of factoring

numbers.

• This posses serious concerns, basically breaks our typical cryptographic techniques.

• In particular, the RSA system is based on the fact that factorizing large numbers

cannot be achieved efficiently.
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Modular Arithmetics

Modular arithmetic works with integers Z
Just like traditional arithmetic, we can perform

addition, subtraction, and multiplication using

modular arithmetic.

The fundamental difference is that we group

the numbers according to their remainder when

dividing by an integer m.

I.e. given a number m, we will say that a ≡ b
(mod m) if a− b is an integer multiple of m

Read as ”a is equivalent to b modulo m” (or,

”mod m”).

E.g. 13 ≡ 3 (mod 5), since 13− 3 = 10 and

and 10 is a multiple of 5.

Basic Arithmetics

Within modular arithmetic, the

equivalence is maintained after

addition, multiplication, or

exponentiation.

a ≡ b (mod m)⇒ a+ n ≡ b+ n

(mod m), ∀n ∈ Z
a ≡ b (mod m)⇒ a · n ≡ b · n
(mod m), ∀n ∈ Z
a ≡ b (mod m)⇒ an ≡ bn (mod

m), ∀n ∈ Z+
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Inverse of a number

An integer c is inverse of a modulo m if ac ≡ 1 (mod m).

For example, the inverse of 5 modulo 7 is 3 since 5 · 3 ≡ 15 (mod 7).

However, not all numbers have inverses since, for example, if we work with modulo 15,

there is no integer c such that 5c ≡ 1 (mod 15).

The numbers that do not have an inverse are those that are not coprime with the

modulus m, that is, if a and m have some common factor then a will not have an

inverse.
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Classical Factorization – Non-trivial square root

Nontrivial square root of m

Defined as that number x which

satisfies, x2 = 1 (mod m)

where x is an integer such that

x ∈ {2,m− 2}
For example, 5 is a nontrivial square

root of 12. That is because

52 ≡ 25 ≡ 1 (mod 12).

This nontrivial square root will always

exist and does not necessarily have to

be unique.

Also, x = x−1 (mod m), x 6= ±1

Finding a nontrivial square root is the key to

the decomposition of a number

x2 ≡ 1 (mod N)⇒ x2 − 1 ≡ 0 (mod N)

⇒ (x− 1)(x+ 1) ≡ 0 (mod N)

Supposing that N can be factored as the

product of two primes p and q

⇒ (x− 1)(x+ 1) = kN = kpq

Let N be an integer that is a product of two

primes p and q. If x is a nontrivial square

root of N such that (x− 1)(x+ 1) = kN

for some integer k, then (x− 1) is a

multiple of one of the primes and (x+ 1) is

a multiple of the other.
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Classical Factorization – GCD

Given two integers, the Greatest

Common Denominator (GCD) is the

largest possible product using the

common prime factors.

E.g. GCD(150, 250) = 50

150 = 5 · 5 · 3 · 2
250 = 5 · 5 · 5 · 5 · 2
⇒ 5 · 5 · 2 = 50

In general, this can be efficiently

implemented in a classical way through

what is known as Euclid’s algorithm.

So, we know that N = pq and

(x+ 1) = sp with s being an integer

whose decomposition will not depend on q.

p = GCD((x− 1), N)

q = GCD((x+ 1), N)

E.g. 24 ≡ 1 (mod 15)

24 = (22)2 ≡ 1 (mod 15)

⇒ p = GCD(22 − 1, 15) = 3

1 = GCD(22 + 1, 15) = 5
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Hands-On: Modular Arithmetic

Implement a function which, given three arguments a, b and m, tells us whether

a ≡ b (mod m)

1 def is equivalent (a, b, m):
2 """ Return a boolean indicating whether the equivalence is satisfied.
3

4 Args:
5 a (int): First number to check the equivalence.
6 b (int): Second number to check the equivalence.
7 m (int): Modulus of the equivalence.
8

9 Returns:
10 bool: True if a = b (m), False otherwise.
11 """

1 return ((a−b) % m == 0)
2

3

4 print(f"13 = 8 (3) is { is equivalent (13, 8, 3) }")
5 print(f"13 = 7 (6) is { is equivalent (13, 7, 6) }")

13 = 8 (3) is False
13 = 7 (6) is True
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Hands-On: Modular Inverse

Implement a function in which given a and m, indicates if there is an inverse for the

number a modulo m.

1 def has inverse (a, m):
2 """ Returns a boolean indicating whether a number has an inverse modulo m.
3

4 Args:
5 a (int): Number to find the inverse modulus m.
6 m (int): Modulus of the equivalence.
7

8 Returns:
9 bool: True if c exists (ac = 1 (m)), False otherwise

10 """

1 for c in range(a):
2 if ( (a∗c−1) % m == 0 ):
3 return True
4 return False
5

6

7 print("(5 ,15)", has inverse (5,15))
8 print("(7 ,15)", has inverse (7,15))

(5,15) False
(7,15) False
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Period Finding

Factorizing a number = non-trivial square roots︸ ︷︷ ︸
quantum alg.

+ determine prime factors

Period Finding

the purpose of this algorithm is, given an operator U and a state |ψ〉, to find an

integer r such that: Ur |ψ〉 = |ψ〉

the period depends on both the operator and the chosen state.

r  period, Ur+m |ψ〉 = Um |ψ〉 , ∀m ∈ Z

Finding is one of those problems that can efficeintly by tackled with a quantum

computer.
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Period Finding Alg.

Let’s assume that we have an state |Ψ0〉 = 1√
r
(|φ〉+ U |φ〉+ · · ·+ Ur−1 |φ〉)

Applying U to |Ψ〉, U |Ψ0〉 = 1√
r
(U |φ〉+ U2 |φ〉+ · · ·+ Ur |φ〉)

Considering that Ur |φ〉 = |φ〉, then we get

U |Ψ0〉 = 1√
r
(U |φ〉+ U2 |φ〉+ · · ·+ |φ〉) = |Ψ0〉

∴ |Ψ0〉 is an eigenvector of U with assoc. eigenvalue 1.

Considering, |Ψ1〉 = 1√
r
(|φ〉+ exp

[
−2πi
r

]
U |φ〉+ |φ〉+

exp
[
−2πi
r
× 2

]
U2 |φ〉+ · · ·+ exp

[
−2πi
r
× (r − 1)

]
Ur−1 |φ〉)

i.e. adding an additional phase in each ot the terms.

Applying U to |Ψ1〉, we can show that |Ψ1〉 is also an eigenvector of U but with a

different eigenvalue. U |Ψ1〉 = exp
[
−2πi
r

]
|Ψ1〉
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Applying U to |Ψ〉, U |Ψ0〉 = 1√
r
(U |φ〉+ U2 |φ〉+ · · ·+ Ur |φ〉)

Considering that Ur |φ〉 = |φ〉, then we get

U |Ψ0〉 = 1√
r
(U |φ〉+ U2 |φ〉+ · · ·+ |φ〉) = |Ψ0〉

∴ |Ψ0〉 is an eigenvector of U with assoc. eigenvalue 1.

Considering, |Ψ1〉 = 1√
r
(|φ〉+ exp

[
−2πi
r

]
U |φ〉+ |φ〉+

exp
[
−2πi
r
× 2

]
U2 |φ〉+ · · ·+ exp

[
−2πi
r
× (r − 1)

]
Ur−1 |φ〉)

i.e. adding an additional phase in each ot the terms.

Applying U to |Ψ1〉, we can show that |Ψ1〉 is also an eigenvector of U but with a

different eigenvalue. U |Ψ1〉 = exp
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r
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Period Finding – generalization

Let’s consider now,

|Ψs〉 =
1

r

(
|φ〉+ e[−

2πi
r
s]U |φ〉+ e[−

2πi
r

2s]U2 |φ〉+ · · ·+ e[−
2πi
r

(r−1)s]U (r−1) |φ〉
)

with s ∈ Z between 0 and r − 1

⇒ |Ψs〉 is an eigenvector of U with eigenvalue e[
2πi
r
s]

QPE = Quantum Phase Estimation

computes the eigenvalue associated with an eigenvector

I.e. if we could obtain any of these states |Ψs〉 and by applying the quantum phase

estimation (QPE) algorithm, we could then obtain r
s
⇒ period!

However, there is a “chicken-egg” situation here...
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So, “if you can not fix it” with enough states... then just add MORE states... i.e. create the

superposition of all the Ψs: |Ψ〉 = 1√
r

∑r−1
s=0 |Ψs〉

= |φ〉

r−1∑
k=0

e[−
2πi
r
k] = 0

∴ |φ〉 is just the superposition of all |Ψs〉

Applying the QPE alg to the operator U |φ〉  superposition of all r
s
, s ∈ {0, r − 1}

Measurements→ decimal numbers→ fraction r
s
⇒ r
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Period Finding - Recap

OBJECTIVE: Obtain the period from decimals

Given an operator U and a state |φ〉, find an integer r such that: Ur |φ〉 = |φ〉

Quantum Phase Estimation (QPE) on

this state, will receive a superposition of

states with amplitudes containing the

different values of s
r

, and by performing a

series of measurements, will recover the

value of r.

⇒ qml.QuantumPhaseEstimation

https://pennylane.readthedocs.io/en/stable/code/api/pennylane.

QuantumPhaseEstimation.html
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After obtaining the potential r values, one would take the largest of all possible

fractions or, more efficiently, calculate the least common multiple of all of them.
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QPE – Hands-on

Implement the QPE circuit for the state |0001〉
Useful functions:

qml.QuantumPhaseEstimation, get unitary matrix,

get phase

(Credit: Xanadu)

1 def U():
2 qml.SWAP(wires =[2 ,3])
3 qml.SWAP(wires =[1 ,2])
4 qml.SWAP(wires =[0 ,1])
5 for i in range (4):
6 qml.PauliX(wires=i)
7

8 matrix = get unitary matrix (U, wire order =range (4))()
9

10 n target wires = 4
11 target wires = range( n target wires )
12 n estimation wires = 3
13 estimation wires = range(4, 4 + n estimation wires )
14

15

16 dev = qml.device("default.qubit", shots=1, wires= n target wires + n estimation wires )
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1 @qml.qnode(dev)
2 def circuit(matrix):
3 """ Return a sample after taking a shot at the estimation wires.
4

5 Args:
6 matrix (array[complex ]): matrix representation of U.
7

8 Returns:
9 array[float ]: a sample after taking a shot at the estimation wires.

10 """

1 # CREATE THE INITIAL STATE |0001> ON TARGET WIRES
2 # penylane initializes states on |0>

3 qml.PauliX(wires =3)
4 # USE THE SUBROUTINE QUANTUM PHASE ESTIMATION
5 qml.QuantumPhaseEstimation(matrix ,target wires , estimation wires )
6

7 return qml.sample(wires= estimation wires )

1 def get phase (matrix):
2 binary = "".join([str(b) for b in circuit(matrix)])
3 return int(binary , 2) / 2 ∗∗ n estimation wires
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1 for i in range (5):
2 print(circuit(matrix))
3 print(f"shot {i+1}, phase:",get phase (matrix))

[1 1 0]
shot 1, phase: 0.25
[0 1 0]
shot 2, phase: 0.5
[1 0 0]
shot 3, phase: 0.25
[1 0 0]
shot 4, phase: 0.25
[1 1 0]
shot 5, phase: 0.0
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Hands-on: Period Finding i

1 def U():
2 qml.SWAP(wires =[2 ,3])
3 qml.SWAP(wires =[1 ,2])
4 qml.SWAP(wires =[0 ,1])
5 for i in range (4):
6 qml.PauliX(wires=i)
7

8 matrix = get unitary matrix (U, wire order =range (4))()
9

10 target wires = range (4)
11 n estimation wires = 3
12 estimation wires = range(4, 4 + n estimation wires )
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Hands-on: Period Finding ii

1 def get period (matrix):
2 """ Return the period of the state using the already−defined
3 get phase function.
4

5 Args:
6 matrix (array[complex ]): matrix associated with the operator U
7

8 Returns:
9 int: Obtained period of the state.

10 """
11

12 shots = 10
13

14 ##################
15 r = 0
16 for i in range(shots):
17 phase = Fraction( get phase (matrix)).denominator
18 if (phase > r):
19 r = phase
20 print(f"shot {i+1}, phase:",phase , Fraction(phase))
21

22 return(r)
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Hands-on: Period Finding iii

1 print( get period (matrix))

shot 1, phase: 4 4
shot 2, phase: 4 4
shot 3, phase: 2 2
shot 4, phase: 4 4
shot 5, phase: 4 4
shot 6, phase: 2 2
shot 7, phase: 1 1
shot 8, phase: 4 4
shot 9, phase: 1 1
shot 10, phase: 4 4
4
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Shor’s Algorithm – relationship between period-finding & nontrivial-square-root

Nontrivial square root: x2 ≡ 1 (mod N), or more generally, xr ≡ 1 (mod N) with r

an even number.

Let’s define the following function, fN,a(m) = am (mod m)

We want to know which m satisfies fN,a(m) = 1, i.e. am ≡ 1 (mod m), because if

m is even⇒ nontrivial square root.

Also, by the defn. f is a periodic function with period m

⇒ finding the period ≈ finding the nontrivial square root.
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Shor’s alg. proposes to define an operator UN,a such that UmN,a |1〉 = |fN,a(m)〉

⇒ finding an r such that frN,a = 1 would be equivalent to finding the minimum r

such that UrN,a |1〉 ≡ |1〉 ⇐ period finding alg.

Full Algorithm

1. Select a random number a between 2 and N − 2

(Classical).

2. Check that a and N are not coprime numbers (Classical).

3. Construct the operator UN,a and calculate its period r

(Period Finding: Quantum).

4. If r is odd, go back to step 1.

5. Compute the nontrivial square root x as ar/2 (Classical).

6. Compute the factors of N as GCD(x− 1, ) and

GCD(x+ 1, N) (Classical).
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Shor’s Algorithm – Some Observations

• UN,a can only be implemented in a QC if a and N are coprime, oherwise there

could be 2 6= elements |x〉 and |y〉 such that U |x〉 = U |y〉 ⇒ U would not be

invertible

• Shor’s algorithm only uses quantum computation to find the period of the function

• Currently, quantum computers have proven to be much more efficient in a reduced

set of algorithms, among which is the finding period of this type of functions

• Shor’s insight was to translate the factorization of prime numbers to period

finding one
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Shor’s Algorithm – Hands-on i

Implement the folowing helper functions:

is coprime receives two integers and returns True if they are coprime or

False otherwise.

is odd given an integer returns True if it is odd and False

otherwise.

is not one given x and N , determine if x 6≡ ±1 (mod N). Return

False if they are equal.

Obs:

Coprime numbers are those numbers that have only one common factor, namely 1.

That means a pair of numbers are said to be co prime when they have their highest

common factor as 1.
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Shor’s Algorithm – Hands-on ii

1 def is coprime (a, N):
2 """ Determine if two numbers are coprime.
3

4 Args:
5 a (int): First number to check if is coprime with the other.
6 N (int): Second number to check if is coprime with the other.
7

8 Returns:
9 bool: True if they are coprime numbers , False otherwise.

10 """
11

12 if np.gcd(a,N) == 1:
13 return True
14 else:
15 return False
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Shor’s Algorithm – Hands-on iii

1 def is odd (r):
2 """ Determine if a number is odd.
3

4 Args:
5 r (int): Integer to check if is an odd number.
6

7 Returns:
8 bool: True if it is odd , False otherwise.
9 """

10

11 if (r % 2 == 0):
12 return False
13 else:
14 return True
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Shor’s Algorithm – Hands-on iv

1 def is not one (x, N):
2 """ Determine if x is not +− 1 modulo N.
3

4 Args:
5 N (int): Modulus of the equivalence.
6 x (int): Integer to check if it is different from +−1 modulo N.
7

8 Returns:
9 bool: True if it is different , False otherwise.

10 """
11

12 if ((x−1)%N==0) or ((x+1)%N==0):
13 return False
14 else:
15 return True
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Shor’s Algorithm – Hands-on v

1 print("3 and 12 are coprime numbers: ", is coprime (3,12))
2 print("5 is odd: ", is odd (5))
3 print("4 is not one mod 5: ",is not one (4,5))
4

5

6 # 3 and 12 are coprime numbers: False
7 # 5 is odd: True
8 # 4 is not one mod 5: False
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Hands-on: Shor’s Algorithm complete implementation

Implement Shor’s algorithm as shown

in the flow diagram:
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The RSA System



Cryptography - Some Basic Definitions i

Encryption The process of converting the message from its plaintext to ciphertext

Plaintext The message in its natural format has not been turned into a secret.

Ciphertext The altered form of a plaintext message, so as to be unreadable for

anyone except the intended recipients. Something that has been turned

into a secret.

Hash function Function that accepts an input message of any length and generates,

through a one-way operation, a fixed-length output called a message

digest or hash.

Source: https://www.isc2.org/Certifications/CISSP/CISSP-Student-Glossary
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Cryptography - Some Basic Definitions ii

m plaintext message

KA(m) ciphertext, encrypted with key KA

m = KB(KA(m)) ciphertext decrypted
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RSA

• RSA = Rivest, Shamir, Adelson algorithm

• the rough estimate is that QC will need ≈ 103 qubits in order to break current

cybersecturiyt schema

Public Key Cryptographic System

• aka Asymmetric Key

Cryptography

• sender and receiver do not share

secret key

• public encryption key is known to

all

• private decryption key is known

only to receiver
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Public Keys Systems

1. Bob will create a method for encoding messages and another method for decoding

messages.

2. Bob will send Alice the instructions to encode any message. These instructions

are what we formally denote as the public key, as when this key is sent over the

communication channel, it can be intercepted by Trudy.

3. Alice encrypts her message for Bob using the public key and sends it to him. In

the same way, Trudy can intercept this message.

4. Bob is the only one who knows the decoding method, which we will call private

key. Therefore, even if someone else knows the encrypted message and the public

key, they will not be able to decode it.
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A tell of symmetric keys

It may seem that if we know how a message is encoded, we can deduce the decoding method,

but this process may be very expensive.

Bob sends a 128-integers message

Suppose Bob knows a matrix M of size 128 and also knows its inverse M−1

Bob will send Alice the matrix M , so Alice can use it to encode her message

⇒ Alice’s encoded message ~c = M ~m

Bob will recover the original message ~m by applying M−1, this matrix has not been made

public at any time:

M−1~c = M−1M ~m = ~m

Someone who knows M (the public key) could recover M−1 (the private key), but the process

of calculating the inverse of a matrix is an expensive process.

Symmetric vs Asymmetric Keys

RSA uses methods for which calculation of the private key is totally intractable for large values

(with a traditional computer).
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RSA Algorithm

• Choose two prime numbers p and q

• Define N = pq

• Define θ = (p− 1)(q − 1)

• Choose an e that is coprime with θ

• Compute d as the inverse of e (mod θ)

The public key will be the pair (e,N) and an

integer message m will be encrypted as:

c = me (mod N)

The private key, known only by Bob, is defined

by the pair (d,N). The process to obtain the

original message is as follows:

m = cd (mod N)

Example,

p = 5, q = 13⇒ N = 5 · 13 = 65

and θ = (5− 1)(13− 1) = 48

Choosing e = 5, as it is coprime with

θ, and calculate its inverse d = 29

For sending the number ”6”, it should

be encoded using the c = me (mod

N) eqn. c = 65 (mod 65) = 41 (mod

65)

To obtain the original msg, we can

verify that 4129 (mod 65) = 6

M.Ponce Intro to Quantum Computing – Applications July 29, 2022 36 / 44



RSA Algorithm

• Choose two prime numbers p and q

• Define N = pq

• Define θ = (p− 1)(q − 1)

• Choose an e that is coprime with θ

• Compute d as the inverse of e (mod θ)

The public key will be the pair (e,N) and an

integer message m will be encrypted as:

c = me (mod N)

The private key, known only by Bob, is defined

by the pair (d,N). The process to obtain the

original message is as follows:

m = cd (mod N)

Example,

p = 5, q = 13⇒ N = 5 · 13 = 65

and θ = (5− 1)(13− 1) = 48

Choosing e = 5, as it is coprime with

θ, and calculate its inverse d = 29

For sending the number ”6”, it should

be encoded using the c = me (mod

N) eqn. c = 65 (mod 65) = 41 (mod

65)

To obtain the original msg, we can

verify that 4129 (mod 65) = 6

M.Ponce Intro to Quantum Computing – Applications July 29, 2022 36 / 44



RSA Algorithm

• Choose two prime numbers p and q

• Define N = pq

• Define θ = (p− 1)(q − 1)

• Choose an e that is coprime with θ

• Compute d as the inverse of e (mod θ)

The public key will be the pair (e,N) and an

integer message m will be encrypted as:

c = me (mod N)

The private key, known only by Bob, is defined

by the pair (d,N). The process to obtain the

original message is as follows:

m = cd (mod N)

Example,

p = 5, q = 13⇒ N = 5 · 13 = 65

and θ = (5− 1)(13− 1) = 48

Choosing e = 5, as it is coprime with

θ, and calculate its inverse d = 29

For sending the number ”6”, it should

be encoded using the c = me (mod

N) eqn. c = 65 (mod 65) = 41 (mod

65)

To obtain the original msg, we can

verify that 4129 (mod 65) = 6

M.Ponce Intro to Quantum Computing – Applications July 29, 2022 36 / 44



RSA Algorithm

• Choose two prime numbers p and q

• Define N = pq

• Define θ = (p− 1)(q − 1)

• Choose an e that is coprime with θ

• Compute d as the inverse of e (mod θ)

The public key will be the pair (e,N) and an

integer message m will be encrypted as:

c = me (mod N)

The private key, known only by Bob, is defined

by the pair (d,N). The process to obtain the

original message is as follows:

m = cd (mod N)

Example,

p = 5, q = 13⇒ N = 5 · 13 = 65

and θ = (5− 1)(13− 1) = 48

Choosing e = 5, as it is coprime with

θ, and calculate its inverse d = 29

For sending the number ”6”, it should

be encoded using the c = me (mod

N) eqn. c = 65 (mod 65) = 41 (mod

65)

To obtain the original msg, we can

verify that 4129 (mod 65) = 6

M.Ponce Intro to Quantum Computing – Applications July 29, 2022 36 / 44



RSA Algorithm

• Choose two prime numbers p and q

• Define N = pq

• Define θ = (p− 1)(q − 1)

• Choose an e that is coprime with θ

• Compute d as the inverse of e (mod θ)

The public key will be the pair (e,N) and an

integer message m will be encrypted as:

c = me (mod N)

The private key, known only by Bob, is defined

by the pair (d,N). The process to obtain the

original message is as follows:

m = cd (mod N)

Example,

p = 5, q = 13⇒ N = 5 · 13 = 65

and θ = (5− 1)(13− 1) = 48

Choosing e = 5, as it is coprime with

θ, and calculate its inverse d = 29

For sending the number ”6”, it should

be encoded using the c = me (mod

N) eqn. c = 65 (mod 65) = 41 (mod

65)

To obtain the original msg, we can

verify that 4129 (mod 65) = 6

M.Ponce Intro to Quantum Computing – Applications July 29, 2022 36 / 44



RSA Algorithm

• Choose two prime numbers p and q

• Define N = pq

• Define θ = (p− 1)(q − 1)

• Choose an e that is coprime with θ

• Compute d as the inverse of e (mod θ)

The public key will be the pair (e,N) and an

integer message m will be encrypted as:

c = me (mod N)

The private key, known only by Bob, is defined

by the pair (d,N). The process to obtain the

original message is as follows:

m = cd (mod N)

Example,

p = 5, q = 13⇒ N = 5 · 13 = 65

and θ = (5− 1)(13− 1) = 48

Choosing e = 5, as it is coprime with

θ, and calculate its inverse d = 29

For sending the number ”6”, it should

be encoded using the c = me (mod

N) eqn. c = 65 (mod 65) = 41 (mod

65)

To obtain the original msg, we can

verify that 4129 (mod 65) = 6

M.Ponce Intro to Quantum Computing – Applications July 29, 2022 36 / 44



Breaking RSA

Qn: can we recover the private key from the public

one?

(e,N) is given as it is teh publci key, and we

would like to know (d,N)

d is unknown, that is, the inverse of e (mod θ)

To obtain that inverse, we need to determine

θ = (p− 1)(q − 1)

⇒ p, q

decompsing N into its prime factors  p and q

Suppose we have intercepted that the

public key is the pair (5,35) and the

encrypted message 3.

To decode the message we first need to

know the prime factors of 35→ p = 5

and q = 7⇒ θ = (5− 1)(7− 1) = 24

Calculating the inverse of 5 (mod 24)→
d = 5

so, we can recover the message m = cd

(mod N) = 35 (mod 35) = 33

Decoding was possible because the number was very small and doable to factorize

Currently, RSA uses primes of the order of 600 digits, which makes factoring in the

traditional way an intractable process.
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RSA in practice

• exponentiation in RSA is computationally intensive

• DES is at least 100 times faster than RSA

• use public key crypto to establish secure connection, then establish second key –

symmetric session key – for encrypting data

• Bob and Alice use RSA to exchange a symmetric session key KS

• once both have KS, they use symmetric key cryptography

M.Ponce Intro to Quantum Computing – Applications July 29, 2022 38 / 44



RSA – Hands-on

Create a function that, given two primes p and q returns valid values of e, d and N .

1 def create keys (p, q):
2 """ Returns the characteristic e, d and N values of RSA
3

4 Args:
5 p (int): First prime number of the algorithm.
6 q (int): Second prime number of the algorithm.
7

8 Returns:
9 (int , int , int): a tuple consisting of the ’e’ value of the RSA codification.

’d’ value of the RSA codification.
10 and ’N’, the product of p and q.
11 """

1 # compute theta by defn
2 theta = (p−1)∗(q−1)
3

4 done = False
5 while (not done):
6 e = np.random.randint(0,p)
7 # check that e and theta are coprimes
8 if (np.gcd(e,theta)==1):
9 done = True

10 d = pow(e,−1,theta)
11 N = p ∗ q
12

13 return (e,d,N)

print( create keys (3 ,53))

# (1, 1, 159)
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Create a function that given d,N and a series of integers [c0, c1, ...], is able to

retrieve the original message. Pass each of the received numbers to ’ascii’ to read the

hidden message.

1 def decode(d,N, code):
2 """ Decode an encrypted message
3

4 Args:
5 d (int): Value of the RSA codification.
6 N (int): Product of p and q.
7 code list[int]: List of values to be decoded.
8

9 Returns:
10 string: Decoded message. (One character per list item)
11 """

1 message = ""
2

3 # m =c^d (mod N)
4 for c in code:
5 message = message + chr(c ∗∗d % N)
6

7 return message
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Post-Quantum Cryptography



• By 2016, NIST started the search for possible Post Quantum Encryption

candidates:

https://csrc.nist.gov/Projects/post-quantum-cryptography

• Main idea would be to have a modular implementation of cryptographical features

• But, one should also consider encrypted storage and silos.
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Some Final Remarks



A lot has been left out...

• A lot of math and physics has not been covered/discussed/presented

• Some concrete algorithms were not covered at full:

Quantum Phase Estimation

Period Finding

Linear systems of equations

Hamiltonean Dynamics

QML
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Some final thoughts... i

• QC is (at the moment) a lot (like a lot) of linear algebra, complex numbers,

probability theory (on steroids), ...

• QCers do NOT work by trying multiple parallel solutions at once

Take a look at this “comic strip” by Scott Aaronson & Zach Weinersmith

https://www.smbc-comics.com/comic/the-talk-3

• QCers work by harvesting the most involved and “weird” concepts of quantum

mechanics: superposition, entanglement, interference
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Some final thoughts... ii

• The way to program QCers (right now) is via quantum circuits ! gates or

operators

Some may say, that programming a QC is finding the right circuit, ie. a

combination of gates/ops. to generate the proper interference pattern in your

quantum states (think about the double-slit experiment, this is what is going on

but at a much larger scale)

Also, the current APIs are more like “quantum circuitry assembly” language

• Be aware and careful (critical?) of the “hype”, e.g. quantum supremacy, quantum

advantage, ...

• QC won’t solve all type of problems, but a set of problems that traditional or

classical computers have a hard time solving, e.g. high ”complexity” (CS) ones, or

“weird” ones
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