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Today’s lecture

The goal for today’s lecture is to discuss how some applications/algorithms for

quantum computers work and can be implemented.

We will discuss the following topics:

• Quatum Fourier Transform (QFT)

Fourier Transform, DFT, FFT, ...

• Shor’s Algorithm

Material based on Xanadu’s codebook and

PennyLane documentation.

Please stop me if you have a question.
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Recap Quantum Gates



Recap Quantum Gates
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and some special cases...

Special cases of RZ: Z, S, T

|ψ〉 = α |0〉+ β |1〉 ⇒ RZ(ω) |ψ〉 = α |0〉+ βeiω |1〉

RZ(ω) =

[
e−i

ω
2 0

0 ei
ω
2

]
∼
[

1 0

0 eiω

]
RZ†(ω) = RZ(−ω)

Z = RZ(ω = π) =

[
1 0

0 −1

]
ZZ = Z2 = I, Z† = Z

S = RZ(ω = π
2
) =

[
1 0

0 i

]
SS = Z, SSSS = ZZ = I, S† = SSS

T = RZ(ω = π
4
) =

[
1 0

0 ei
π
4

]
T † = T 7
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One more thing...

When implementing your quantum circuits, you will need to READ the

DOCUMENTATION!

https://pennylane.readthedocs.io/en/stable/code/qml.html
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Fourier Transform



Fourier Transform (FT) – brief review

• Let f be a function of some variable x

• The FT is defined as,

F(f(x)) ≡ f̂(k) ∝
∫
f(x)e±ik·xdx

• Inverse transformation,

F−1(f̂(k)) ≡ f(x) ∝
∫
f̂(k)e∓ik·xdk

• The overall idea is that any function

(under certain conditions) can be

expressed as a harmonic series

• The FT is a mathematical expression of

that

• Constitutes a linear (basis) transformation

in function space.

• Transforms from spatial to wavenumber, or

time to frequency, etc.

• Constants and signs are conventions.
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FT – Examples & Applications

Examples

• Double sided exponential: f(x) = e−a|x|(a > 0)⇒ f̂(k) = 2a
a2+k2

• Rectangular pulse: f(t) =

{
1 −T ≤ t ≤ T
0 |t| > T

⇒ f̂(ω) = 2 sin(ωT )
ω

• Unit impulse: f(t) = δ(t)⇒ f̂(ω) = 1

Applications

• Solve differential equations, integration, polynomials multiplication, ...

• Communications, Signal processing, sampling.

• Harmonic analysis, principal modes, ...
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Discrete Fourier Transform (DFT)

• Given a set of n function values on a regular grid: fj = f(j∆x)

• Fourier-transform these n values (Fourier series),

f̂k =

n−1∑
j=0

fje
±2πijk/n

• Easy to inverse-transform (revert),

fj =
1

n

n−1∑
j=0

f̂ke
∓2πijk/n

• Discrete Fourier transform is a linear transformation.

• In particular, it’s a matrix-vector multiplication.

• Slow: naively, costs O(n2)
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Fast Fourier Transform (FFT) i

• Derived in partial form several times before and even after Gauss, because he’d

just written it in his diary in 1805 (published later).

• Rediscovered (in general form) by Cooley and Tukey in 1965.

Basic Idea

• Write each n-point FT as a sum of two n/2 point FTs.

• Do this recursively logn times.

• Each level requires ∼ n computations: O(n logn) instead of O(n2). Could as

easily divide into 3, 5, 7, ... parts
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Fast Fourier Transform (FFT) ii

• Define ωn = e(2πi)/n.

• Note that ω2
n = ωn

2
.

• DFT takes form of matrix-vector multiplication: f̂k =
∑n−1
j=0 ω

kj
n fj

• Rewriting this, assuming n is even, f̂k =

n
2
−1∑
j=0

ωkjn
2
f2j︸ ︷︷ ︸

FT of even samples

+ωkn

n
2
−1∑
j=0

ωkjn
2
f2j+1︸ ︷︷ ︸

FT of odd samples
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Inverse DFT

• Inverse DFT is similar to forward DFT, up to a normalization: almost just as fast.

fj =
1

n

n−1∑
k=0

f̂ke
∓2πijk/n

Inverse DFT is similar to forward DFT, up to a normalization: almost just as fast.

• FFT allows quick back-and-forth between x and k domain (or e.g. time and

frequency domain).

• Allows parts of the computation and/or analysis to be done in the most

convenient or efficient domain.
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Polynomial Multiplication

Let’s consider two polynomials,

A(x) = x2 + 2x+ 1

B(x) = 3x2 + 2

To compute C(x) = A(x) ·B(x), we can use the distribute property,

C(x) = (x2 + 2x+ 1) · (3x2 + 2)

= x2 · (3x2 + 2) + 2x · (3x2 + 2) + 1 · (3x2 + 2)

= 1 + 2x+ 4x2 + 6x3 + 3x4

Coefficient representation: C(x)  [1, 2, 4, 6, 3]
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How difficult is multiplying two polynomials?

Given two polynomials of degree d,

A(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d =
∑d
n=0 ajx

j

B(x) = b0 + b1x+ b2x
2 + · · ·+ bdx

d =
∑d
n=0 bjx

j

⇒ C(x) = A(x) ·B(x) is a polynomial with degree 2d,

C(x) = c0 + c1x+ c2x
2 + · · ·+ c2dx

2d =

2d∑
n=0

cjx
j

Using the distribute property, we end up with a complexity ∼ O(d2)
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Faster polynomials multiplication

Polynomials can be multiplied faster when they are represented using values (a set of

n ≥ d+ 1 points representing a d-degree polynomial) instead of using coefficients

Polynomials can be converted from the coefficient representation to the value

representation using the Discrete Fourier transform.

Evaluation: coeffs. → values

A(x) = {(x0, A(x0), (x1, A(x1)), . . . , (x2d+1, A(x2d+1)}
B(x) = {(x0, B(x0), (x1, B(x1)), . . . , (x2d+1, B(x2d+1)}

Multiplication in the values representation
C(x) =

{(x0, A(x0) ·B(x0), (x1, A(x1) ·B(x1)), . . . , (x2d+1, A(x2d+1) ·B(x2d+1))}
∼ O(d) !!!
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Alternative Algorithm for Multiplying Polynomials

1. Selection: choose a set of n ≥ 2d+ 1 points to represent both our polynomials.

∼ constant linear time

2. Evaluation: convert the two polynomials from the coefficient representation to the

value representation.

∼ linear time and that we have to evaluate the polynomial at n ≥ 2d+ 1 points

⇒ quadratic running time for evaluating and multiplying both the polynomials

3. Multiplication: multiply element-wise to get the value representation of the

product of the polynomials.

∼ O(d)

4. Interpolation: convert the value representation back to the coefficient

representation.
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Divide-and-Conquer

The FFT algorithm is an elegant technique that uses the divide-and-conquer approach

to make evaluation and interpolation faster.

(Credit: Xanadu)

P (x) = x2 is an even function; only

needs to evaluate the polynomial at only

n/2 points – P (x) = P (−x)

P (x) = x3 is an odd function;

P (x) = −P (−x)

In general, any given polynomial could be partitioned into an even and odd part,

P (x) = Peven(x) + Podd(x)
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Eg.

P (x) = 1 + 2x+ 4x2 + 6x3 + 3x4

⇒ P (x) = (1 + 4x2 + 3x4)︸ ︷︷ ︸
Pe(x)

+x (2 + 6x2)︸ ︷︷ ︸
Po(x)

u ≡ x2,
Pe(u) = 1 + 4u+ 3u2

Po(u) = 2 + 6u
⇒ P (x) = Pe(x

2) + xPo(x
2)

We can think of polynomials of x2 (rather than x) with a degree d ≤ 2, we can

evaluate them at fewer points.

We are not reducing the number of points, rather just the number of evaluations based

on the relationship between positive and negative pairs of points.
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For a general polynomial,

P (x) = Pe(x
2) + xPo(x

2)

P (−x) = Pe(x
2)− xPo(x2)

To evaluate a polynomial of degree (n− 1), we need to evaluate it at n points.

Recursively, we can evaluate Pe(x
2) and Po(x

2) at each [x2
1, x

2
2, . . . , x

2
n/2]→

using the parity relations between the polynomials, we end up with two polynomials

evaluated at n
2

points.

However, the {x2
i } points posse a problem... if xi ∈ R⇒ {x2

i } > 0
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n-th Roots of Unity

The way to fix the issue of being left out of negative numbers can be solved by

considering the n-th roots of the eqn. xn = 1 .

Eg. for n = 4,

we have [1,−1, i,−i].

(Credit: Xanadu)

In general, for xn = 1, there are n

complex roots: [ω0, ω1, . . . , ω(n−1)]

where

ω = e
2πi
n = cos

(
2π
n

)
+ i sin

(
2π
n

)
For any polynomial of degree d, we

choose n ≥ (d+ 1) roots of unity so

that the polynomial can be evaluated

at these points – with n a power of

2.

(Credit: Xanadu)

Some properties:

ω0 + ω1 + . . .+ ω(n−1) = 0
∑n−1
k=0 ω

xk = 0, for x 6= 0
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Interpolation

Given any polynomial P (x) = (x0, P (x0)), (x1, P (x1)), . . . , (xd, P (xd))
P (x0) = p0 + p1x0 + p2x

2
0 + · · ·+ pdx

d
0

P (x1) = p0 + p1x1 + p2x
2
1 + · · ·+ pdx

d
1

...

P (xd) = p0 + p1xd + p2x
2
d + · · ·+ pdx

d
d


P (x0)

P (x1)
...

P (xd)

 =


1 x0 x2

0 · · · xd
0

1 x1 x2
1 · · · xd

1
...

...
...

. . .
...

1 xd x2
d · · · xd

d


︸ ︷︷ ︸

Vandermonde matrix


p0
p1
...

pd


Evaluating in the set of n ≥ (d+ 1) points as the n-th roots of unity,

P (ω0)

P (ω1)
...

P (ωn−1)

 =


1 1 1 · · · 1

1 ω ω2 · · · ωn−1

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)


︸ ︷︷ ︸

DFT matrix


p0

p1
...

pn−1
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Unitary DFT Matrix & IDFT

• Interpolation, as matrix-vector multiplication  O(n2)⇒ FFT ∼ O(n logn)

• The DFT matrix, is unitary up to a factor of n, i.e. UDFTU
†
DFT = nI

• The DFT matrix is invertible, U−1
DFT = 1

n
U†DFT

• The Inverse Discrete Fourier transform (IDFT) is essentially just the DFT but with a factor

of 1
n

and the inverse roots of unity

UDFT =


1 1 1 · · · 1

1 ω ω2 · · · ωn−1

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)



UIDFT = 1
n


1 1 1 · · · 1

1 ω−1 ω−2 · · · ω−(n−1)

...
...

...
. . .

...

1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)(n−1)
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(Credit: Xanadu)
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Numpy FFT implementation of Polynomials Multiplication i

Given a polynomial in its coefficient representation, convert it into a value

representation using NumPy’s DFT/FFT module.

1 def coefficients to values (coefficients):
2 """ Returns the value representation of a polynomial
3

4 Args:
5 coefficients (array[complex ]): a 1−D array of complex
6 coefficients of a polynomial with
7 index i representing the i−th degree coefficient
8

9 Returns:
10 array[complex ]: the value representation of the
11 polynomial
12 """
13 # apply FFT
14 return np.fft.fft(coefficients)
15

16

17 A = [4, 3, 2, 1]
18 print( coefficients to values (A))
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Numpy FFT implementation of Polynomials Multiplication ii

Given a polynomial in its value representation, use the NumPy’s DFT/FFT module to

convert from the value representation to the coefficient representation.

1 def values to coefficients (values):
2 """ Returns the coefficient representation of a polynomial
3

4 Args:
5 values (array[complex ]): a 1−D complex array with
6 the value representation of a polynomial
7

8 Returns:
9 array[complex ]: a 1−D complex array of coefficients

10 """
11

12 # apply inverse−FFT
13 return np.fft.ifft(values)
14

15

16 A = [10.+0.j, 2.−2.j, 2.+0.j, 2.+2.j]
17 print( values to coefficients (A))
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Numpy FFT implementation of Polynomials Multiplication iii

Implement a helper function nearest power of 2 that calculates a power of 2 that is

greater than a given number.

1 def nearest power of 2 (x):
2 """ Given an integer , return the nearest power of 2.
3

4 Args:
5 x (int): a positive integer
6

7 Returns:
8 int: the nearest power of 2 of x
9 """

10

11 return int (2∗∗ np.ceil(np.log2(x)))
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Numpy FFT implementation of Polynomials Multiplication iv

Given two polynomials in their coefficient representation, write a function to multiply

them both using the functions coefficients to values, nearest power of 2, and

values to coefficients

1 def fft multiplication (poly a , poly b ):
2 """ Returns the result of multiplying two polynomials
3

4 Args:
5 poly a (array[complex ]): 1−D array of coefficients
6 poly b (array[complex ]): 1−D array of coefficients
7

8 Returns:
9 array[complex ]: complex coefficients of the product

10 of the polynomials
11 """
12

13 # Calculate the number of values required
14 # polynomial degree
15 d = (len( poly a )−1)+(len( poly b )−1) + 1
16

17 # Figure out the nearest power of 2
18 d= nearest power of 2 (d)
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Numpy FFT implementation of Polynomials Multiplication v

19

20 # Pad zeros to the polynomial
21 # padding: 2nd arg a list with nbr of elements before and after
22 pad poly a =np.pad(poly a ,(0,d−len( poly a )),’constant ’,constant values =(0))
23 pad poly b =np.pad(poly b ,(0,d−len( poly b )),’constant ’,constant values =(0))
24

25 # Convert the polynomials to value representation
26 poly a values = coefficients to values ( pad poly a )
27 poly b values = coefficients to values ( pad poly b )
28

29 # Multiply
30 result = np.multiply( poly a values , poly b values )
31

32 # Convert back to coefficient representation
33 return values to coefficients (result)
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Quantum Fourier Transform



Quantum Fourier Transform

The Quantum Fourier transform

(QFT) is the quantum version of the

discrete Fourier transform (DFT).

The transformation is applied to the amplitudes

of a quantum state, rotating the state vectors

from any given basis (e.g., the computational

basis) into the Fourier basis.

UQFT =
1
√
N


1 1 1 · · · 1

1 ω ω2 · · · ω(N−1)

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ω(N−1) ω2(N−1) · · · ω(N−1)2


with N = 2n, ω = e

2πi
N .
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One qubit, n = 1
N = 21 = 2, ω = eπi = −1

UQFT = 1√
2

[
1 1

1 −1

]
Two qubits, n = 2
N = 22 = 4, ω = eπi/2 = i

UQFT = 1
2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i



Looking at the structure of the QFT matrix, eg.

consider the columns, its values are cycling the

roots of unity.

The particular columns represent different speeds at

which we cycle around.

(Credit: Xanadu)
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QFT Circuit

Qn: which gate operations will result in operator/matrix as the QFT one?

(Credit: Xanadu)

the two upper blocks Hadamard

bottom: HS =

1√
2

[
1 1

1 −1

] [
1 0

0 i

]
=[

1 i

1 −i

]

⇒ UQFT = 1√
2

[
H H

HS −HS

]

⇒ USQFT = (I ⊗H)(I ⊗ |0〉 〈0|+ S ⊗ |1〉 〈1|)(H ⊗ I)
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USQFT = (I ⊗H)(I ⊗ |0〉 〈0|+ S ⊗ |1〉 〈1|)(H ⊗ I)

is a tensor factorized version of the modified QFT matrix.

Since we swapped the inner rows, we need to

swap them back!

(Credit: Xanadu)

It’s possible to show that the SWAP-gate applied to USQFT  UQFT , i.e.

UQFT = SWAP · USQFT

An alternative, to reduce the circuit depth, is

reversing the operations on the first and the

second qubit to get rid of the SWAP-gate

(Credit: Xanadu)
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Properties of the QFT

Unitarity
QFT (more generally the discrete Fourier transformation matrix) is unitary

Convolution-Multiplication
Given an n-qubit state: [α0, α1, . . . , α(N−1)] QFT−−−→

[β0, β1, . . . , β(N−1)] a new

vector in the Fourier basis, with prob. |βj|2

If input amplitudes are shifted cyclically, the output distribution remains the same

Periodicity
For periodic functions, |α〉 = (α0, α1, . . . , α(N−1)), whose period r divides N

⇒ |α〉 = (α0, α1, . . . , α(r−1), α0, α1, . . . , α(r−1), · · · )

⇒ |α〉 =
√

r
N

∑N
r
−1

j=0 |jr〉 =⇒ the QFT is also periodic with period N
r
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QFT – Hands-on i

Implement the circuit that performs the single-qubit QFT operation, i.e., for n = 1.

1 dev = qml.device("default.qubit", wires =1)
2

3 @qml.qnode(dev)
4 def one qubit QFT ( basis id ):
5 """A circuit that computes the QFT on a single qubit.
6

7 Args:
8 basis id (int): An integer value identifying
9 the basis state to construct.

10

11 Returns:
12 array[complex ]: The state of the qubit after applying QFT.
13 """
14 # Prepare the basis state | basis id>

15 bits = [int(x) for x in np. binary repr (basis id , width=dev. num wires )]
16 qml.BasisStatePreparation(bits , wires =[0])
17

18 ### YOUR CODE HERE ###
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QFT – Hands-on ii

1 dev = qml.device("default.qubit", wires =1)
2

3 @qml.qnode(dev)
4 def one qubit QFT ( basis id ):
5 """A circuit that computes the QFT on a single qubit.
6

7 Args:
8 basis id (int): An integer value identifying
9 the basis state to construct.

10

11 Returns:
12 array[complex ]: The state of the qubit after applying QFT.
13 """
14 # Prepare the basis state | basis id>

15 bits = [int(x) for x in np. binary repr (basis id , width=dev. num wires )]
16 qml.BasisStatePreparation(bits , wires =[0])
17

18 # The QFT on a single qubit can be performed using the Hadamard gate.
19 qml.Hadamard(wires =0)
20

21 return qml.state()
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QFT – Hands-on iii

Implement a circuit that performs the two-qubit QFT operation.

1 n bits = 2
2 dev = qml.device("default.qubit", wires= n bits )
3

4 @qml.qnode(dev)
5 def two qubit QFT ( basis id ):
6 """A circuit that computes the QFT on two qubits using qml.QubitUnitary.
7

8 Args:
9 basis id (int): An integer value identifying the basis state to construct.

10

11 Returns:
12 array[complex ]: The state of the qubits after the QFT operation.
13 """
14

15 # Prepare the basis state | basis id>

16 bits = [int(x) for x in np. binary repr (basis id , width=dev. num wires )]
17 qml.BasisStatePreparation(bits , wires=[0, 1])
18

19 ### YOUR CODE HERE ###
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QFT – Hands-on iv

1 n bits = 2
2 dev = qml.device("default.qubit", wires= n bits )
3

4 @qml.qnode(dev)
5 def two qubit QFT ( basis id ):
6 """A circuit that computes the QFT on two qubits using qml.QubitUnitary.
7

8 Args:
9 basis id (int): An integer value identifying the basis state to construct.

10

11 Returns:
12 array[complex ]: The state of the qubits after the QFT operation.
13 """
14

15 # Prepare the basis state | basis id>

16 bits = [int(x) for x in np. binary repr (basis id , width=dev. num wires )]
17 qml.BasisStatePreparation(bits , wires=[0, 1])
18

19 # define U QFT matrix for n=2
20 U QFT =0.5 ∗ np.array ([[1,1,1,1], [1,1j,−1,−1j], [1,−1,1,−1], [1,−1j,−1,1j]])
21

22 # Apply U QFT
23 qml.QubitUnitary(U QFT ,wires =[0 ,1])
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QFT – Hands-on v

24

25 return qml.state()
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Exercise I: TO BE COMPLETED and submitted!

Implement the two-qubit QFT

using a combination of gates

(without using qml.QubitUnitary).

1 dev = qml.device("default.qubit", wires =2)
2

3 @qml.qnode(dev)
4 def decompose two qubit QFT ( basis id ):
5 """A circuit that computes the QFT on two qubits using elementary gates.
6

7 Args:
8 basis id (int): An integer value identifying the basis state to

construct.
9

10 Returns:
11 array[complex ]: The state of the qubits after the QFT operation.
12 """
13 # Prepare the basis state | basis id>

14 bits = [int(x) for x in np. binary repr (basis id , width=dev. num wires )]
15 qml.BasisStatePreparation(bits , wires=[0, 1])
16

17 ### YOUR CODE HERE ###
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Visualizing your circuits...

# print/draw circuit
# print(qml.draw( decompose two qubit QFT , show all wires =True )(2))
# https :// pennylane.readthedocs.io/en/stable/code/api/pennylane.draw.html

(Credit: Xanadu)

https://pennylane.ai/blog/2021/05/

how-to-visualize-quantum-circuits-in-pennylane/
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Hadamard Transform/QFT

The Quantum Fourier transform (QFT) is closely related to the Hadamard transform.
The Hadamard transform takes a system of

qubits from the computational basis (for

example) to the Hadamard basis,

H⊗n |x〉 = 1√
N

∑N−1
y=0 (−1)x·y |y〉

N = 2n

The Quantum Fourier transform can be

represented as a unitary matrix,

UQFT |x〉 = 1√
N

∑N−1
y=0 ω

x·y |y〉

ω = e
2πi
N , N = 2n

About representations
|x〉 = |110〉︸ ︷︷ ︸

binary

= |6〉︸︷︷︸
decimal

7→ |1〉 ⊗ |1〉 ⊗ |0〉

A bitstring, x1, x2, . . . , xn  

x12n−1 + x22n−2 + x32n−3 + . . .+ xn20 =
∑n
k=1 xk2

n−k
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Designing the n-qubit QFT circuit

1. For a single qubit, the QFT is performed just using the Hadamard gate.

2. For n > 1 qubits, we may need to apply a Hadamard gate to produce a

superposition, along with some kind of rotations to account for the added phases

ωx·y

it is possible to write the QFT in a way that is tensor-factorized,

UQFT |x1x2 . . . xn〉 = 1√
N

[
(
|0〉+ e2πi0.xn |1〉

) (
|0〉+ e2πi0.xn−1xn |1〉

)
· · ·

· · ·
(
|0〉+ e2πi0.x1x2...xn |1〉

)]
with fractional binary, xl

2
+

xl+1

22 + . . .+ xm
2m−l+1 ≡ 0.xlxl+1 . . . xm

One can prove,⇒ UQFT |x1x2 . . . xn〉 = 1√
N

⊗n
k=1

[
|0〉+ e

2πi

2k
x |1〉

]
QN: which gates will produce this state?
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⊗n
k=1

[
|0〉+ e

2πi

2k
x |1〉

]
QN: which gates will produce this state?
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QFT Complexity

Number of gates (more generally the gate count) required for the QFT on n-qubits:

n+ (n− 1) + (n− 2) + . . .+ 1 = n(n+1)
2

SWAP gates, of which there are at most n/2 since a SWAP works on two qubits at

once,⇒ n(n+1)
2

+ n
2
 O(n2)

n-qubits, N = 2n amplitudes

N = 2n ⇒ n = log(N)⇒
O((log(N) log(N)))

The transformation is encoded into the

amplitudes of the qubits;⇒ measuring in

an arbitrary basis state

Using the Fourier basis, we can solve

classically intractable problems such as

factoring in polynomial time.
(Credit: Xanadu)
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QFT – Hands-on i

(Credit: Xanadu)
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QFT – Hands-on ii

Implement the QFT for three qubits.

1 dev = qml.device("default.qubit", wires =3)
2

3 @qml.qnode(dev)
4 def three qubit QFT ( basis id ):
5 """A circuit that computes the QFT on three qubits.
6

7 Args:
8 basis id (int): An integer value identifying the basis state to

construct.
9

10 Returns:
11 array[complex ]: The state of the qubits after the QFT operation.
12 """
13 # Prepare the basis state | basis id>

14 bits = [int(x) for x in np. binary repr (basis id , width=dev. num wires )]
15 qml.BasisStatePreparation(bits , wires=[0, 1, 2])
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QFT – Hands-on iii

1 # Rk gates // NOT used!
2 R2=np.array ([[1,0],[0,np.exp(np.pi ∗0.5j)]])
3 R3=np.array ([[1,0],[0,np.exp(np.pi ∗0.25j)]])
4 # R2 −> TT −> S
5 # R3 −> T
6 # R2R3 −> TTT −> ST
7

8 # on |0>

9 qml.Hadamard(wires =0)
10 qml.ctrl(qml.S,control =1)(wires =0)
11 qml.ctrl(qml.T,control =2)(wires =0)
12

13 # on |1>

14 qml.Hadamard(wires =1)
15 qml.ctrl(qml.S,control =2)(wires =1)
16

17 # on |2>

18 qml.Hadamard(wires =2)
19

20 qml.SWAP(wires =[0 ,2])
21

22 return qml.state ()

⇓

(Credit: Xanadu)
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QFT – Hands-on iv

Implement a circuit that reverses the order of n

qubits using SWAP gates.

(Credit: Xanadu)

1 def swap bits ( n qubits ):
2 """A circuit that reverses the order of qubits , i.e.,
3 performs a SWAP such that [q1, q2 , ..., qn] −> [qn , ... q2, q1].
4

5 Args:
6 n qubits (int): An integer value identifying the number of qubits.
7 """
8

9 # loop over pair of wires: 0,n−1; 1,n−2, ...
10 for i in range(int( n qubits /2)):
11 qml.SWAP(wires=[i,( n qubits−1)−i])
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Exercise II: TO BE COMPLETED and submitted!

Implement the n-qubit QFT using the

circuit that performs the Hadamards

and controlled rotations on n qubits

using qml.ControlledPhaseShift.

Recall that you must read the

documentation, e.g. see

https://pennylane.readthedocs.io/en/stable/code/api/

pennylane.ControlledPhaseShift.html

(Credit: Xanadu)
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