
Introduction to quantum computing:
Grover search

Erik Spence

SciNet HPC Consortium

27 July 2022

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 1 / 27

Today’s code and slides

You can get the slides and code for today’s class at the SciNet Education web page.

https://scinet.courses/1231

Click on the link for the class, and look under ”Lectures”, click on ”Grover search”.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 2 / 27

https://scinet.courses/1231

Breaking locks

One of the classic problems quantum computing has been applied to is breaking combination
locks. How would we frame this problem?

Rather than having a combination lock which has numbers, we will have a lock that
consists of bits, either 0 or 1.

We can assume this without loss of generality.

As the number of bits increases, the number of possible combinations grows quickly. For
n bits there are 2n possible combinations.

As you might imagine, solving this by brute-force is not tenable.

If there are 80 bits then there are 280 ' 1024 (about 1 septillion) combinations.

Using an petascale supercomputer (1015 operations per second) this would take about
13,922 days to completely search.

Obviously this brute force approach is not worth considering.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 3 / 27

A quantum approach
As we discussed last class, quantum computers use qubits.

Because qubits can be in a superposition of quantum states |0〉 and |1〉 simultaneously,
they may be in a better position to break the lock than classical approaches, where each
bit is either 0 or 1.

If we put each individual qubit into a uniform superposition:

|+〉 = 1√
2
(|0〉+ |1〉)

then the total state of the system will be the tensor product of all n qubits:

|ψ〉 = |+〉 ⊗ |+〉 ⊗ . . .⊗ |+〉
= |+〉⊗n

=
1√
2n

∑
x∈{0,1}n

|x〉

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 4 / 27

A quantum approach, continued

We start off with our qubits in a uniform superposition.

|ψ〉 = 1√
2n

∑
x∈{0,1}n

|x〉

What does that look like in practice? To give a specific example, if n = 3, then

|ψ〉 = 1√
23

(|000〉+ |100〉+ |010〉+ |001〉+ |110〉+ |101〉+ |011〉+ |111〉)

Where the various states are the tensor products of the possible states of the constituent
qubits (|010〉 = |0〉 ⊗ |1〉 ⊗ |0〉), as we discussed last class.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 5 / 27

The oracle

We need a means of determining if any given set of bits opens the lock.

We will create a function to fill this role.

The function will act like us, dialing the particular combination into the lock and seeing if
it opens.

If we assume that the combination that opens the lock is given by |s〉, then a simple
lock-testing function might be

f (x) =

{
1 x = s

0 otherwise

This function is known as the ”oracle”.

Each use of the function is known as a ”query”.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 6 / 27

The oracle, continued

It would be convenient if we could encode the oracle into a Unitary operator of some kind.

This is usually formalized by raising the function’s output to a phase.

Uf |x〉 = (−1)f(x) |x〉

=

{
− |x〉 x = s

|x〉 otherwise

Since this acts on a computational basis state and doesn’t change the amplitude of the
state, this is obviously Unitary.

Note that this operator has no effect on the probability of measuring the correct state.

The oracle can be equivalently written as

Uf = I − 2 |s〉 〈s|

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 7 / 27

A quantum approach, continued

Ok, now what?

Our initial quantum state is the uniform superposition of n qubits, |ψ〉.
The answer, |s〉, is in there somewhere.

(0100111010, is a 10-bit example)

But the probability of using the oracle and randomly picking the correct answer is 1/2n,
which is the same as brute-force guessing.

While it may appear that the superposition of n qubits can do an huge number of
calculations at once, we actually only measure a randomly-sampled state of all the
possible states.

So now what?

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 8 / 27

A different approach

The simplest quantum approach is no better than classical. Where does that leave us?

One can come up with tricks that can be used to do moderate speedup from random
guessing, such as testing in pairs, but there are better ways.

What we would like is to figure out a way to measure the correct answer, |s〉, with high
probability.

To do this, we need to increase the probability amplitude of the solution state, relative to
the other 2n − 1 possible states.

This is known as ”amplitude amplification”.

If the probability amplitude of |s〉 is large compared to the other possible states the
probability of measuring it will be high.

This approach should be more effective at finding the solution.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 9 / 27

Grover search (1996)
How can we increase the amplitude of the correct solution, so that we measure the correct
answer with high probability?

Let us consider all N = 2n possible states simultaneously.

First, we start with |ψ〉, the uniform distribution of all possible states.

Next, apply the oracle. This will flip the sign of the amplitude of the solution state, |s〉.
Flipping the sign alone isn’t enough to help, however, since the amplitude of the state has
not changed, we’ve only introduced a relative phase change.

Recall that the probability of measuring a state goes like the magnitude of the amplitude
squared, so relative phase changes don’t help.

What are we left with at this point?

Uf |ψ〉 = (I − 2 |s〉 〈s|) |ψ〉
= |ψ〉 − 2 〈s|ψ〉 |s〉

which is the uniform superposition, with the correct answer flipped in sign.
Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 10 / 27

Grover search, continued
If we examine the inner product of the solution and our new state, we find

〈s|Uf |ψ〉 = 〈s|ψ〉 − 2 〈s|ψ〉 〈s|s〉 = −〈s|ψ〉

So we’ve flipped the sign of the correct answer, now what?

Create a new operator, D, called the diffusion operator, defined as

D = 2 |ψ〉 〈ψ| − I
where |ψ〉 is the usual uniform superposition of states.

Note that
I D |ψ〉 = |ψ〉
I D |φ〉 = − |φ〉 if |φ〉 is orthogonal to |ψ〉.

Applying this operator to the above state has an interesting affect.

The diffusion operator spreads amplitude around the uniform state.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 11 / 27

Grover search, continued more

Uf |ψ〉 = |ψ〉 − 2 〈s|ψ〉 |s〉
Applying the Diffusion operator (D = 2 |ψ〉 〈ψ| − I) the inner product with the solution now
becomes:

〈s|DUf |ψ〉 = 〈s|D (|ψ〉 − 2 〈s|ψ〉 |s〉)
= 〈s| (2 |ψ〉 〈ψ| − I) (|ψ〉 − 2 〈s|ψ〉 |s〉)
= 〈s| (2 |ψ〉 〈ψ| − I) |ψ〉 − 2 〈s| (2 |ψ〉 〈ψ| − I) 〈s|ψ〉 |s〉
= 2 〈s|ψ〉 〈ψ|ψ〉 − 〈s|ψ〉 − 4 〈s|ψ〉 〈ψ|s〉 〈s|ψ〉+ 2 〈s|ψ〉 〈s|s〉
= 〈s|ψ〉 − 4 〈s|ψ〉3 + 2 〈s|ψ〉
= 3 〈s|ψ〉 − 4 〈s|ψ〉3

Since 〈s|ψ〉 = 1/
√
2n < 1, the projection of our working state onto the solution

state has increased by applying the DUf operator combination!

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 12 / 27

Grover search, continued even more

So where are we now?

We’ve found an operator combination, DUf , that performs amplitude amplification.
Which is what we were after.

This operator, G = DUf , is known as the Grover operator.

If we apply this operator many times to our state, the amplitude of the answer will grow,
and the amplitude of all other states will shrink.

If we then measure the final state, it will be probable that we will measure |s〉, the
solution state.

Let’s see how this algorithm looks in practice.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 13 / 27

Grover search, example
How does this look in practice? Let’s try
out this algorithm by hand.

We will set the problem size to 3 bits.

We will choose the solution to be |101〉,
which corresponds to an index of 5.

The first thing we need to do is build the
oracle, Uf . This, you will recall, will just
flip the sign of the solution, and leave all
other states unchanged.

In [1]: import numpy as np

In [2]:

In [2]: nbits = 3

In [3]: sindex = 5

In [4]:

In [4]: Uf = np.identity(2**nbits)

In [5]: Uf[sindex, sindex] = -1

In [6]: Uf

Out[6]:

array([[1., 0., 0., 0., 0., 0., 0., 0.],

[0., 1., 0., 0., 0., 0., 0., 0.],

[0., 0., 1., 0., 0., 0., 0., 0.],

[0., 0., 0., 1., 0., 0., 0., 0.],

[0., 0., 0., 0., 1., 0., 0., 0.],

[0., 0., 0., 0., 0., -1., 0., 0.],

[0., 0., 0., 0., 0., 0., 1., 0.],

[0., 0., 0., 0., 0., 0., 0., 1.]])

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 14 / 27

Grover search, example, continued
Now we need to build our diffusion operator D = 2 |ψ〉 〈ψ| − I.

Recall that 〈ψ| = 1√
23

[1, 1, 1, 1, 1, 1, 1, 1]

There are 2n elements in |ψ〉, where n is the number of bits.

|ψ〉 〈ψ| = 1√
23



1
1
1
1
1
1
1
1


1√
23

[
11111111

]
=

1

23



11111111
11111111
11111111
11111111
11111111
11111111
11111111
11111111


Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 15 / 27

Grover search, example, continued more

Now that we’ve got a matrix
form for |ψ〉 〈ψ|, building the
rest of D is straightforward.

D = 2 |ψ〉 〈ψ| − I

Now that we have D, we can
prepare our initial state, the
uniform superposition state,
|ψ〉.

In [7]:

In [7]: psipsi = np.ones((2**nbits, 2**nbits)) / 2**nbits

In [8]:

In [8]: D = 2 * psipsi - np.identity(2**nbits)

In [9]:

In [9]: psi = np.ones(2**nbits) / np.sqrt(2**nbits)

In [10]:

In [10]: psi

Out[10]:

array([0.35355339, 0.35355339, 0.35355339, 0.35355339,

0.35355339, 0.35355339, 0.35355339, 0.35355339])

In [11]:

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 16 / 27

Grover search, example, continued some more

Now we apply the operations
DUf to |ψ〉. We’ll do this in
two steps.

Applying this operation
amplifies the amplitude, as
expected. Repeating the
operation DUf amplifies it
even more.

In [11]:

In [11]: temp psi = Uf.dot(psi)

In [12]:

In [12]: temp psi

Out[12]:

array([0.35355339, 0.35355339, 0.35355339, 0.35355339,

0.35355339, -0.35355339, 0.35355339, 0.35355339])

In [13]:

In [13]: psi2 = D.dot(temp psi)

In [14]:

In [14]: psi2

Out[14]:

array([0.1767767, 0.1767767, 0.1767767, 0.1767767,

0.1767767, 0.88388348, 0.1767767, 0.1767767])

In [15]:

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 17 / 27

Grover search, example, continued even more

But notice what happens if we
apply the Grover operator too
many times.

Clearly there’s a limit to how
many times we should apply
the operator. We’ll come back
to this question in a few slides.

In [15]:

In [15]: psi3 = D.dot(Uf.dot(psi2))

In [16]:

In [16]: psi3

Out[16]:

array([-0.08838835, -0.08838835, -0.08838835, -0.08838835,

-0.08838835, 0.97227182, -0.08838835, -0.08838835])

In [17]:

In [17]: psi4 = D.dot(Uf.dot(psi3))

In [18]:

In [18]: psi4

Out[18]:

array([-0.30935922, -0.30935922, -0.30935922, -0.30935922,

-0.30935922, 0.57452426, -0.30935922, -0.30935922])

In [19]:

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 18 / 27

Encoding the oracle
This is all well and good, but how do we implement the oracle, Uf , as a circuit?

Uf |x〉 =
{
− |x〉 x = s

|x〉 otherwise

Let us consider storing the phase information generated by Uf |s〉 in an ”auxiliary” qubit.
Consider a new operator, C(s)X:

C(s)X |x, y〉 =
{
|x〉 ⊗X |y〉 x = s

|x, y〉 otherwise

where X is the Pauli X gate, and y is our auxiliary qubit. This operator is like our previous
CNOT gate, but the control is activated by the value of s, and the NOT operation applies to
the auxiliary qubit only.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 19 / 27

Encoding the oracle, continued

What’s the point? Well, if |y〉 = |−〉, then we get this behaviour:

C(s)X |x,−〉 =
{
|x〉 ⊗X |−〉 = − |x,−〉 x = s

|x,−〉 otherwise

Which is exactly the behaviour that we want for the oracle.

Uf |x〉 =
{
− |x〉 x = s

|x〉 otherwise

This lays out a means of building a circuit that can behave like the oracle.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 20 / 27

The oracle, as a circuit

To implement the oracle as a circuit, we use the C(s)X
operator, using |−〉 as the auxiliary qubit.

The C(s)X operator is simply a multi-control-qubit CNOT
gate. Rather than control on values of 1 only, as we did
previously, here we control on a customized combination of
ones and zeros. In this case, the control is activated for
|101〉. Solid circles indicate a ”1”, hollow circles a ”0”.

The original qubits are known as the ”query”.

This technique is known as the ”kickback trick”.

query

|−〉

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 21 / 27

Encoding the diffusion operator
Ok, now what about the diffusion operator, D = 2 |ψ〉 〈ψ| − I? Recall that

D |ψ〉 = |ψ〉
D |φ〉 = − |φ〉, if 〈φ|ψ〉 = 0.

To reach this behaviour, we note a few things:

|ψ〉 = H⊗n |0〉
H⊗n ·H⊗n = I

H⊗n |ψ〉 = H⊗n ·H⊗n |0〉 = |0〉

As such, if we apply H⊗n to the query qubits, and the result is |0〉, we know that we started
with |ψ〉. If we then apply a C(0)X gate to our auxiliary qubit |−〉, as we did previously with
the oracle, we will get a negative sign. We can then apply H⊗n again to revert to the original
state.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 22 / 27

Encoding the diffusion operator, continued

Again, we use an auxiliary qubit to hold the phase
information.

If we consider the operation H⊗nC(0)XH⊗n we
see that .

H⊗nC(0)XH⊗n |x,−〉 =
{
− |x,−〉 |x〉 = |ψ〉
|x,−〉 otherwise

Note that this is not D, but rather −D that has
been implemented.

query Hn Hn

|−〉

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 23 / 27

Grover search, the full circuit

State Prep Uf D

query Hn Hn Hn

|0〉 X H

The green and red operations are repeated as many times as desired. Again, this particular
implementation is for the case |s〉 = |101〉.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 24 / 27

How many iterations?

How many iterations of the Grover
operator should we apply?

There are several ways to calculate the
scaling. Today we’ll do it graphically. If
you calculate the number of Grover steps
for n = {3, 4, 5, 6, 7} bits you’ll get
S = {2, 3, 4, 6, 8}. A simple fit indicates
that the number of steps is scaling like√
N .

A more formal analysis reveals that
S ' π

4

√
N .

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
n

2 × 100

3 × 100

4 × 100

6 × 100

Nu
m

 it
er

at
io

ns

For our 80-bit example, rather than 280

times we need only run the Grover
operator π

4

√
280 ' 240 times.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 25 / 27

Summary

A summary of this section of the course.

We can apply our quantum computer to the problem of searching for a lock combination.

We first create an oracle operator, Uf , which flips the sign of the solution state, but
leaves other states unchanged.

We create a diffusion operator, D, which projects the state onto a component
proportional to the uniform distribution, and a part orthogonal to it.

Applying both of these operators on the uniform superposition results in amplitude
amplification of the solution state, |s〉.
Unlike classical approaches which scale like O(N), Grover search scales like O(

√
N),

which is a significant improvement.

Grover search is a good example of the speedup one can see from using a quantum algorithm.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 26 / 27

Grover search: hands on
Try this problem: write a function which implements Grover search, for n qubits, with the
Grover operator applied k times, for some combination string (”010”, for example):

Initialize your qubits. Initializing the query qubits is done most easily with the PennyLane
”broadcast” function:

qml.broadcast(qml.Hadamard, wires = range(nbits), pattern = ’single’)

Build the oracle, which is most-easily implemented using the qml.MultiControlledX
function. This function will implement an arbitrarily controlled PauliX operation on a
given wire.

Build the diffusion operator.

Repeat the Grover operator steps k times.

Return the probabilities associated with the query qubits.

Play with the number of qubits and the number of iterations. Confirm some of the
numbers from slide 24.

Erik Spence (SciNet HPC Consortium) Grover search 27 July 2022 27 / 27

	About this class
	Motivation for neural networks
	Code

