
BCH2203 Python for Biochemistry: 2. Lists and input/output

Ramses van Zon

Winter 2022

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 1 / 36

1

Scripts and user input

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 2 / 36

User input with the input() function

With the input function, we can ask the user to type in a value and store it in a variable.
>>> s=input()
...
>>> print(s)
...

You can pass a string to it, which becomes the prompt from that input:
>>> s=input("Give a number: ")
Give a number: ...
>>> print(s)
...

Regardless of the inputted value, the type of value that input() returns is always a string.

You’d have to convert it yourself to a number of that’s what you’d expect, e.g.
>>> s_as_int = int(s)
>>> s_as_float = float(s)

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 3 / 36

http://www.scinethpc.ca

Scripting

Okay, so we typed in the input() command, then
we typed in a value (say ‘5’), and then that value
was stored in s as a string.
Why did we not just store the value in s (s='5'),
then?
The idea is that the input could be given by some
other user, but since they’d have to be sitting
right next to us as we are coding, they could type
the s='5' statement.

>>> s=input("Give a number: ")
Give a number: ...
>>> print(s)
...

We have arrived at a point where the interactive
session has lost its utility.

We want to create something that will execute
the python commands elsewhere without typing
them in interactively.

An app, if you wish.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 4 / 36

http://www.scinethpc.ca

Script=program=application=app

As far as python is concerned, they are all the same.

It’s something you can run and which performs a function.

With running, we mean here typing “python SCRIPTNAME” on the command line, with SCRIPTNAME replaced
by the name of your script.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 5 / 36

http://www.scinethpc.ca

Creating python scripts

Creating a python script is as simple as storing the commands into a text file.

Choose your editor, ensure it can save as ‘plain’ ASCII text. No .doc or .rtf, please.

E.g., nano, emacs, vi, vim, sublime text, gedit, notepad, . . .

Make sure you understand where your editor saves your files.
I Either save your file in the directory where your terminal is.
I Or change directory in the terminal to the directory where you editor saves your files.

Creating, editing, saving a text file differs per system.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 6 / 36

http://www.scinethpc.ca

The else statement

We saw the if statement last lecture, which executes a code block based on a condition.

What if the condition is not true, and we need a different set of statements to be executed?

Use “else:”.
>>> hour=7
>>> if hour < 12:
... print("Good morning!")
... print("Would you like some coffee?")
... else:
... print("Good afternoon!")
... print("No more coffee for you!")
...
Good morning!
Would you like some coffee?
>>>

It’s not the afternoon after hour=17!

Right, so let’s fix that with “elif”
>>> hour=19
>>> if hour < 12:
... print("Good morning!")
... print("Would you like some coffee?")
... elif hour < 17:
... print("Good afternoon!")
... print("No more coffee for you!")
... else:
... print("Good night!")
...
Good night!
>>>

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 7 / 36

http://www.scinethpc.ca

Errors

Taking input from a user, and then validating it, is a rather big topic on its own.

Your code should to some extent be prepared for thing to go wrong.
(“defensive programming”)

E.g., what if s=input() is suppose to give a integer, the code does int(s), but the input isn’t integer? We
get some funny error like:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '45.1'

We will talk about Python error messages later, but users of your script do not wish to decipher that.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 8 / 36

http://www.scinethpc.ca

Error handling

You could check if the string is in fact a number,
as there’s a function for that.

It would look like this:
s=input("Give me an integer: ")
if s.isnumeric():

i=int(s)
print(i)

else:
print("That is not an integer!")

Good, but there may be other things that go
wrong in the input that we did not catch.

An alternative is the ‘try first, deal with failure
later’ model: exceptions.

This take the following form
s=input("Give me an integer: ")
try:

i=int(s)
print(i)

except:
print("That is not an integer!")

You can be more specific in the except on what
kind of error you’re catching, but let’s not worry
about that now.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 9 / 36

http://www.scinethpc.ca

Python’s error messages

Because we cannot foresee every possible error, let’s look at a typical uncaught Python error.
>>> print 17
File "<stdin>", line 1
print 17

ˆ
SyntaxError: Missing parentheses in call to 'print'

Read the lines in the error messages carefully:
1) Something’s up in line 1 in a file “<stdin>”, i.e., the prompt.
2) The statement with the issue is printed, here, it is print 17.
3) The ˆ more precisely pinpoints where there’s an issue
4) The last line is most informative: there should have been

parentheses in the call to ‘print’.
The type of this error is a ’SyntaxError’.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 10 / 36

http://www.scinethpc.ca

Python’s error messages

Let’s look at another error message:
>>> print(seventeen)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'seventeen' is not defined

Read the lines in the error messages carefully:
1) What’s a traceback?

When the error occurs in the execution step, several function may be called before the error, and the
traceback would show these.

2) Here, the error occurs in line 1 in a file “<stdin>”, i.e., the prompt, but before a function has been called,
i.e., on the “<module>” level.

3) Again, the last line is most informative: the variable seventeen
has not been defined (yet?).
The type of this error is a ’NameError’.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 11 / 36

http://www.scinethpc.ca

Python’s error messages

Here’s another one:
>>> a = 11
>>> b = '17'
>>> c = a + b
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

What was going on here?

A TypeError:

a and b are of different types and cannot be added by the operator +.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 12 / 36

http://www.scinethpc.ca

2

Repetitions/Loops

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 13 / 36

Try again

In the read-an-int example, it would be nice to start over if the user didn’t enter an integer.

A ‘go to beginning’ statement does not exist in Python (no ’go-to’s in fact), but loops are.

Loops are repetitions of a code block for different, given cases, or until a condition is fulfilled.

So we could ‘loop’ (do the same thing over and over again) until the entered string is an integer.

This would be a while loop.

(The other kind of loop is a for, which we will see later)

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 14 / 36

http://www.scinethpc.ca

While loop

In the read-an-int example, it would be nice to
start over if the user didn’t enter an integer.
We could ‘loop’ until the entered string is an
integer.

This is one way:
haveint=False
while not haveint:

s=input("Give me an integer: ")
try:
i=int(s)
haveint=True
except:
print("That is not an integer, try again!")

print(i)

At the start of the while loop, haveint is checked, and python enters the the code block that belongs to
while (the “body of the loop”)

If i=int(s) succeeds, haveint is set to True.

haveint is checked at the next iteration.

Note that print(i) is outside the loop body.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 15 / 36

http://www.scinethpc.ca

Escaping the loop

If the expression after while is not true after the loop body is executed, the loop stops.

The loop can also be stopped at any time in the loop body with the break keyword.

In both cases, execution of the script continues with the next non-indented line of code.

So instead of:
haveint=False
while not haveint:
s=input("Give me an integer: ")
try:
i=int(s)
haveint=True
except:
print("That is not an integer, try again!")

print(i)

We could also have used:
while True:

s=input("Give me an integer: ")
try:
i=int(s)
break
except:
print("That is not an integer, try again!")

print(i)

Note: break stops the loop, but not the script.
The exit() function can stop a script.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 16 / 36

http://www.scinethpc.ca

3

List

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 17 / 36

Lists

A list is a collection of objects.

We have not talked about objects before, but any data of all the types we have introduced count as objects:
integers, strings, floats.

We create a list by putting objects between square parentheses [], separated by commas, e.g.,
>>> lst = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 'blast off!']

List elements do not all have to be the same type.

Lists are objects, so list elements can be lists themselves.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 18 / 36

http://www.scinethpc.ca

What can we do with these lists?

We can access elements using the notation LISTNAME[INDEX].

E.g.:
>>> lst = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 'blast off!']
>>> print(lst[0])
10
>>> print(lst[10])
blast off!

Note that the first element has index 0.

(You can think of the index as an offset from the beginning of the list.)

We can reassign elements of the list, too:
>>> lst[10] = 'abort'
>>> print(lst)
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 'abort']

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 19 / 36

http://www.scinethpc.ca

What can we do with these lists?

You can add an element to the end with append method:
>>> lst.append('not ready')
>>> print(lst)
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 'abort', 'not ready']

You can remove an element by index with the pop method:
>>> lst.pop(2)
8
>>> print(lst)
[10, 9, 7, 6, 5, 4, 3, 2, 1, 'abort', 'not ready']

Note that the removed element is returned by pop.
(del lst[2] would also have worked, but would not have returned removed element).

The current length of the list is obtained from the len function.

>>> print(len(lst))
11

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 20 / 36

http://www.scinethpc.ca

Loops with lists

It is rather common to have to go over a list and do something with every element.

This is a repetition, i.e., a loop.

We could write
i = 0
while i<len(lst):

x=lst[i]
do_something_with(x)
i=i+1

But python can do that with a for loop:
for x in lst:

do_something_with(x)

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 21 / 36

http://www.scinethpc.ca

Other handy list manipulations

lst.index(value): Find the index of value in lst.
lst.count(value): Count number of occurrences of value in lst.
lst.extend(otherlist): Append all elements of otherlst.
lst.insert(index,object): Insert object in list at position index.
lst.remove(value): Remove the first element that is equal to value in lst.
lst.copy(): Create a copy of ‘lst.
lst.clear(): Remove all elements from lst.
lst.reverse(): Reverse the lst.
element in list: Check if element is in lst.
lst.sort(): Put lst in sorted order.
sorted(lst): Create a sorted version of lst.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 22 / 36

http://www.scinethpc.ca

List comprehension

List comprehensions are a short hand way of creating lists.

They combine a for loop, appends, and if statements.

Example: list of all squares that are divisible by 4 and are less than 100.
without list comprehensions:
squarelist=[]
for i in range(100):

i2 = i**2
if i2%4 == 0:

squarelist.append(i2)

with list comprehensions:
squarelist=[i**2 for i in range(100) if i**2 % 4 == 0]

General syntax:
[<EXPRESSION> for <VARIABLE> in <LIST-LIKE> if <CONDITION>]

The if is optional, e.g. [i**2 for i in range(4)] gives [0,1,4,9].

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 23 / 36

http://www.scinethpc.ca

4

Modules

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 24 / 36

Using Modules

In addition to built in functions and command, you can also get additional functionality in Python using
modules.

Before you can start using that functionality, you have to import the corresponding modules.

E.g.
import sys
import biopython
import matplotlib.pyplot

You can change the namespace that the modules functions end up in
Changing the name of the module: import numpy as np
Importing specific functions: from numpy import ones
Importing everything: from numpy import *

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 25 / 36

http://www.scinethpc.ca

Using Modules, continued

There are many, many, many standard modules

We will only get to look at a few very basic ones:
I sys: system specific parameters and functions (command line arguments, exit, path, . . .)
I os: operating system stuff (chdir, stat, getenv, listdir, walk, . . .)
I shutils: High level file operations (copyfile, copytree, rmtree, move, . . .)

For more standard modules, see https://docs.python.org/3/library/index.html

In addition, there are non-standard modules in the pypi repository, that you can install with the pip command
on the terminal command line (not within python).

These modules are put in a special location that python knows about, so they do not have to reside in the
directory of your script.

(note: If you ever end up with modules outside of this special location, you can append them to the
PYTHON_PATH variable.)

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 26 / 36

http://www.scinethpc.ca
https://docs.python.org/3/library/index.html

5

Python File I/O

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 27 / 36

Basic File Input and Output in Python

Files contain your data

Files are organized in directories or folders

A directory is a file too

Path: sequence of directories to get to a file

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 28 / 36

http://www.scinethpc.ca

Python modules/packages for files

built-in python file objects

os, os.path

shutil

pickle, shelve, json

zipfile, tarfile, . . .

csv, numpy, scipy.io.netcdf, pytables, . . .

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 29 / 36

http://www.scinethpc.ca

Basic (Text) File Input and Output in Python

Get current directory:

os.getcwd()

Create directory:

os.mkdir('FOLDER1')

Change current directory:

os.chdir('FOLDER1')

Get file list:

os.listdir()

Get file list by wildcard pattern:

glob.glob('pattern')

Path manipulations: os.path module.

Open file for read,write,read/write,append:

f=open('FOLDER1/WORLD.TXT','r')
f=open('FOLDER1/WORLD.TXT','w')
f=open('FOLDER1/WORLD.TXT','r+')
f=open('FOLDER1/WORLD.TXT','a')

Write to file:

print(v,file=f), f.write(s)

Read file: f.read(), f.readlines()

Read line by line: f.readline()

Get/set file pointer:

f.tell(), f.seek(position)

Close file: f.close()

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 30 / 36

http://www.scinethpc.ca

Metadata

File metadata describes the file and its properties:

File name

File size

Location on disk

File type (though often through magic identifiers)

Dates/times

Read/write permissions

. . .

Size:
>>> os.path.getsize('FOLDER1/WORLD.TXT')

Permissions (linux)
>>> st=os.stat('FOLDER1/WORLD.TXT')
>>> st.st_mode & stat.S_IXUSR
>>> st.st_mode & stat.S_IWUSR

Change, modification, access time
>>> st.st_ctime, st.st_mtime, st.st_atime
>>> datetime.fromtimestamp(round(st.st_mtime))

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 31 / 36

http://www.scinethpc.ca

Content metadata

File content metadata described properties of the data stored in the file:

What is the data?

Where did it come from?

Who made it/owns it/. . . .?

Format of the data

Units

. . .

This type of metadata is not kept by the file system, but is very important for the long run. Adding content
metadata requires some effort. You could use a separate file, but we will see that formats like NetCDF allow you to
add metadata in the date file itself.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 32 / 36

http://www.scinethpc.ca

Minimizing I/O Operations

Disk I/O is usually the slowest part of a pipe line.

If manipulating data from files is most of what you do, try and minimize iops.
Bad

>>> s='Hi world\n'
>>> for c in s:
... f=open('hiworld.txt','a')
... f.write(c)
... f.close()

Good
>>> s='Hi world\n'
>>>
>>> f=open('hiworld.txt','w')
>>> f.write(s)
>>> f.close()

Work in memory and reuse data if you can.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 33 / 36

http://www.scinethpc.ca

Closing a file automatically

Closing a file when you done flushes any buffers and ensures that what is written actually gets to disk.

But it’s easy to forget.

The with statement can automatically close the file for you:
>>> with open('hiworld.txt','w') as f:
... f.write('Hi world!\n')
...

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 34 / 36

http://www.scinethpc.ca

Summary

This was a start of our overview of the Python language.

Learning any (programming) language requires practice.

This is where the weekly assignments come in.

Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 35 / 36

http://www.scinethpc.ca

Assignment: Survey Data Analysis

You are given the results of a survey which contained ten yes-or-no questions.

The results are stored in a text file called 2022-01-19_survey-results.txt, of which each line contains one
survey entry.

Each survey entry is a string of 10 characters, which can be either ‘Y’ or ‘N’
(the first character is the answer to the first question, the second character the answer to the second, etc.)

Your task is write a python script called survey_analysis.py to analyze the data.

In particular:

Your script should read the file 2022-01-19_survey-results.txt into a list.

For each of the ten questions, it should print the percentage of ‘N’ and ‘Y’ answers.

It should also print the number of surveys with zero ‘Y’ answers, then the number of surveys with one ‘Y’
answer, with two ‘Y’ answers, . . . , and with ten ‘Y’ answers.

Your script should be submitted to the course site by January 26, 2022, at midnight.

Note: On the teach cluster, you can get the data file with the command

$ cp /home/l/lcl_uotphy1610/lcl_uotphy1610s1959/2022-01-19_survey-results.txt .
Ramses van Zon BCH2203 Python for Biochemistry: 2. Lists and input/output Winter 2022 36 / 36

http://www.scinethpc.ca

	Scripts and user input
	Repetitions/Loops
	List
	Modules
	Python File I/O

