Advanced Parallel Programming with MPI

Bruno C. Mundim
SciNet HPC Consortium

October 29, 2021

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 1/40

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 2 /40

Common Ways of Doing Parallel 1/0

Sequential 1/O (only proc 0 Writes/Reads)

e Pro
» Trivially simple for small I/O
» Some | /O libraries not parallel

e Con
> Bandwidth limited by rate one client can sustain
» May not have enough memory on node to hold all data

» Won't scale (built in bottleneck)

CPUO CPU1 CPU2 CPU3

A

October 29, 2021 3/40

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI

Common Ways of Doing Parallel 1/0

N files for N Processes

e Pro
» No interprocess communication or coordination necessary
> Possibly better scaling than single sequential I/O

e Con
» As process counts increase, lots of (small) files, won't scale
» Data often must be post-processed into one file
» Uncoordinated |/O may swamp file system (File LOCKS!)

Ll Ll
o ———

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 4/ 40

Common Ways of Doing Parallel 1/0

All Processes Access One File

e Pro
> Only one file
> Data can be stored canonically, avoiding post-processing
> Will scale if done correctly
e Con
» Uncoordinated 1/O WILL swamp file system (File LOCKS!)
» Requires more design and thought

CPUO CPUI CPU2 CPU3

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI| October 29, 2021 5 /40

Parallel 1/0

Multiple processes of a parallel program accessing data (reading or writing) from a common file.

* Non-parallel 1/0 is simple but:

» Poor performance (single process writes to one file)

» Awkward and not interoperable with other tools (each process writes a separate file)
» Parallel 1/0

» Higher performance through collective and contiguous 1/O

» Single file (visualization, data management, storage, etc)

» Works with file system not against it

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI| October 29, 2021 6 /40

Contiguous and Non-contiguous 1/0

Contiguous |/O move from a single memory block into a single file block

Noncontiguous |/O has three forms:

» Noncontiguous in memory, in file, or in both

Structured data leads naturally to noncontiguous |/O (e.g. block decomposition)

Describing noncontiguous accesses with a single operation passes more knowledge to |/O system

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 7 /40

Independent and Collective 1/0

e |ndependent | /O operations specify only what a single process will do
» calls obscure relationships between 1/0O on other processes

e Many applications have phases of computation and /O
> During |/O phases, all processes read/write data
» We can say they are collectively accessing storage

e Collective |/O is coordinated access to storage by a group of processes
» functions are called by all processes participating in 1/0

» Allows file system to know more about access as a whole, more optimization in lower software layers,

better performance

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 8 /40

MPI-10

Would like I/O to be parallel and not serial

But writing one file per process is inconvenient and inefficient.

MPI-I0 = The parallel I/O part of the MPI-2 standard.

Many other parallel 1/O solutions are built upon it.

e Versatile and better performance than standard unix [O.

Usually collective 1/0O is the most efficient.

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 9 /40

MPI-10 exploits analogies with MPI

e Writing <> Sending message
® Reading <> Receiving message
e File access grouped via communicator: collective operations
e User defined MPI datatypes for e.g. non-contiguous data layout
e |0 latency hiding much like communication latency hiding
(IO may even share network with communication)
o All functionality through function calls.

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 10 / 40

MPI-10 Example: Hello World

e cd advanced-mpi/mpiio

e Compile and run it:

$ source $SCRATCH/advanced-mpi/setup
$ cd $SCRATCH/advanced-mpi/mpiio
$ make

$ srun -n 4 ./helloworldc

Rank 1 has message <World!>

Rank 3 has message <World!>

Rank O has message <Hello >

Rank 2 has message <Hello >

$ cat helloworld.txt

Hello World!Hello World!$

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 11/ 40

MPI-10 Example: Hello World

#include <stdio.h>
#include <string.h> /* helloworldc.c */
#include <mpi.h>
int main(int argc, char **argv) {
int rank, size;
MPI_Offset offset;
MPI_File file;
MPI_Status status;
const int msgsize=6;
char message[msgsize+1];
MPI_Init(&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
if (rank’,2) strcpy (message, "World!") ;else strcpy(message,"Hello ");
printf ("Rank %d has message </s>\n", rank, message);
offset=msgsize*rank;
MPI_File_open(MPI_COMM_WORLD, "helloworld.txt",
MPI_MODE_CREATE|MPI_MODE_WRONLY,
MPI_INFO_NULL, &file);
MPI_File_seek(file, offset, MPI_SEEK_SET);
MPI_File_write(file, message, msgsize, MPI_CHAR, &status);
MPI_File_close(&file);
MPI_Finalize();

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI

12 / 40

MPI-10 Example: Hello World

program MPIIO_helloworld

use mpi

implicit none ! helloworldf.£90
integer (mpi_offset_kind) :: offset

integer, dimension(mpi_status_size) :: wstatus

integer :: fileno, ierr, rank, comsize

integer, parameter :: msgsize=6

character (msgsize) :: message

call MPI_Init(ierr)
call MPI_Comm_size(MPI_COMM_WORLD, comsize, ierr)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
if (mod(rank,2) == 0) then

message = "Hello "
else

message = "World!"
endif
offset = rank*msgsize
call MPI_File_open(MPI_COMM_WORLD, "helloworld.txt", &

ior (MPI_MODE_CREATE,MPI_MODE_WRONLY) ,MPI_INFO_NULL, fileno, ierr)

call MPI_File_seek (fileno, offset, MPI_SEEK_SET, ierr)
call MPI_File_write(fileno,message,msgsize,MPI_CHARACTER,wstatus,ierr)
call MPI_File_close(fileno, ierr)
call MPI_Finalize(ierr) t

endBBEnog Mundirwp(;clllgét']ag%%grﬁgtzl}m Advanced Parallel Programming with MPI| October 29, 2021 13 /40

MPI-10 Example: Hello World

srun -n 4 ./helloworldc

CPU1

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 14 / 40

MPI-10 Example: Hello World

if ((rank % 2) == 0)

strcpy (message, "Hello ");
else

strcpy (message, "World!");

CPU1

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 15 / 40

MPI-10 Example: Hello World

MPI_File_open(MPI_COMM_WORLD, "helloworld.txt",
MPI_MODE_CREATE|MPI_MODE_WRONLY,
MPI_INFO_NULL, &file);

CPU1

=

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 16 / 40

MPI-10 Example: Hello World

offset = (msgsize*rank);

MPI_File_seek(file, offset, MPI_SEEK_SET);

Ll
—T

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 17 / 40

MPI-10 Example: Hello World

MPI_File_write(file, message, msgsize, MPI_CHAR, &status);

CPU1

a,

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 18 / 40

MPI-10 Example: Hello World

MPI_File_close(&file);

CPU1

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 19 / 40

Basic 10 Operations (C)

int MPI_File_open(MPI_Comm comm, char*filename, int amode, MPI_Info info, MPI_Filex fh)
int MPI_File_seek(MPI_File fh, MPI_Offset offset, int to)

int MPI_File_set_view(MPI_File fh,MPI_Offset disp,MPI_Datatype etype, MPI_Datatype filetype,
char* datarep, MPI_Info info)

int MPI_File_read(MPI_File fh, void* buf, int count, MPI_Datatype datatype, MPI_Status*status)
int MPI_File_write(MPI_File fh, void* buf, int count, MPI_Datatype datatype, MPI_Status*status)

int MPI_File_close(MPI_Filex fh)

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 20 / 40

Basic 10 Operations (Fortran)

MPI_FILE_OPEN(comm,filename,amode,info,fh,err)
character*(*) filename
integer comm,amode,info,fh,err

MPI_FILE_SEEK(fh,offset,whence,err)
integer (kind=MPI_OFFSET_KIND) offset
integer fh,whence,err

MPI_FILE_SET_VIEW(fh,disp,etype,filetype,datarep,info,err)
integer (kind=MPI_OFFSET_KIND) disp

integer fh,etype,filetype,info,err

character*(*) datarep

MPI_FILE_READ(fh,buf,count,datatype,status,err)
<type> buf (*)
integer fh,count,datatype,status(MPI_STATUS_SIZE),err

MPI_FILE_WRITE(fh,buf,count,datatype,status,err)
<type> buf (%)
integer fh,count,datatype,status(MPI_STATUS_SIZE),err

MPI_FILE_CLOSE(fh)
integer fh

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI

October 29, 2021

21 / 40

Opening and closing a file

As in regular 1/0, files are maintained through file handles. A file gets opened with MPI_File_open. E.g.
the following codes open a file for reading, and close it right away:

in C:

MPI_FILE fh;

MPI_File_open(MPI_COMM_WORLD, "test.dat" ,MPI_MODE_RDONLY,MPI_INFO_NULL,&fh);
MPI_File_close(&fh);

in Fortran:

integer :: fh, err
call MPI_FILE_OPEN(MPI_COMM_WORLD,"test.dat",MPI_MODE_RDONLY,MPI_INFO_NULL,fh,err)
call MPI_FILE_CLOSE(fh,err)

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 22 / 40

Opening a file requires. ..

® communicator,

e file name,

file handle, for all future reference to file,

® info structure, or MPI_INFO_NULL,

file mode, made up of combinations of the
following

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 23 / 40

Opening a file requires. ..

® communicator, e MPI_MODE_RDONLY: read only
. e MPI_MODE_RDWR: reading and writing
e file name, .
e MPI_MODE_WRONLY: write only
o file handle, for all future reference to file, e MPI_MODE_CREATE: create the file if it does
. not exist
fo struct MPI_ INFO_NULL . . .
- Wi AR, Cf - - ' e MPI_MODE_EXCL: error if creating a file that
o file mode, made up of combinations of the exists
following e MPI_MODE_DELETE_ON_CLOSE: delete file on
close

e MPI_MODE_UNIQUE_OPEN: file not to be
opened elsewhere

e MPI_MODE_SEQUENTIAL: file to be accessed
sequentially

e MPI_MODE_APPEND: position all file pointers
to file-end

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 23 / 40

etypes, filetypes, file views

To make binary access a bit more natural for many applications, MPI-1O defines file access through the
following concepts:

e displacement: Where to start in the file.
e ctype: Allows to access the file in units other than bytes.
e filetype: Each process defines what part of a shared file it uses.

> Filetypes specify a pattern which gets repeated in the file.
» Useful for non-contiguous access.
» For contiguous access, often etype=filetype.

Together, these three specify the file view.
File views have to be defined collectively with MPI_File_set_view.

If no view is defined, a default view is active, with etype MPI_BYTE, and displacement O.

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 24 / 40

Contiguous Data

int buf[...];

MPI_Offset bufsize=...;

MPI_File_open(MPI_COMM_WORLD, "file",MPI_MODE_WRONLY,
MPI_INFO_NULL,&fh) ;

MPI_Offset disp=rank*bufsize*sizeof (int) ;

MPI_File_set_view(fh,disp,MPI_INT,MPI_INT,"native",

MPI_INFO_NULL) ;
MPI_File_write(fh,buf,bufsize,MPI_INT,MPI_STATUS_IGNORE) ;
MPI_File_close(&fh);

CPU1

M

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 25 / 40

Overview of all read functions

. Single task Collective

Individual file pointer .

blocking MPI_File_read MPI_File_read_all

nonblocking MPI1_File_iread MPI_File_read_all_begin

: +(MPI_Wait) MPI_File_read_all_end

Explicit offset . .

blocking MPI_File_read_at MPI_File_read_at_all

nonblocking MPI_File_iread_at MPI_File_read_at_all_begin

. +(MPI_Wait) MPI_File_read_at_all_end

Shared file pointer :

blocking MPI_File_read_shared = MPI_File_read_ordered

nonblocking MPI_File_iread_shared MPI_File_read_ordered_begin
+(MPI_Wait) MPI_File_read_ordered_end

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 26 / 40

Overview of all write functions

. Single task Collective

Individual file pointer .

blocking MPI_File_ write MPI_File_write__all

nonblocking MPI1_File_iwrite MPI_File_write_all_begin

: +(MPI_Wait) MPI_File_write_all_end

Explicit offset . -

blocking MPI_File_write_at MPI_File_write_at_all

nonblocking MPI_File_iwrite__at MPI_File_write_at_all_begin

: +(MPI_Wait) MPI_File_write_at_all_end

Shared file pointer : :

blocking MPI_File_write_shared = MPI_File_write_ordered

nonblocking MPI_File_iwrite_shared MPI_File_write_ordered_begin
+(MPI_Wait) MPI_File_write_ordered_end

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 27 / 40

Choices

After a file has been opened and a fileview is defined in each process, processes can independently read
and write to their part of the file.

But if the 10 occurs at regular spots in the program, which different processes reach the same time, it will
be better to use collective 1/0.
These are the _all versions of the MPI-IO routines.

Two file pointers
An MPI-IO file has two different file pointers:

individual file pointer: one per process.

» shared file pointer: one per file: _shared/_ordered
“Shared” doesn’t mean “collective”, but does imply synchronization!

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI

October 29, 2021 28 / 40

Strategic considerations

Pros for single task 1/0:
® One can virtually always use only indivivual file pointers,
» |f variable timings, no need to wait for other processes
Cons:
» If there are interdependences between how processes write, there may be faster collective /0
operations.
» Collective |/O can collect data before doing the write or read.
True speed depends on file system, size of data to write and implementation.

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 29 / 40

Non-contiguous data

What if the data in the file is supposed to be as follows?
CPU1

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 30 / 40

Non-contiguous data

What if the data in the file is supposed to be as follows?
CPU1

e Filetypes can help!

e Or custom MPI data types (also useful in high dimensional ghost cells).

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 30 / 40

Non-contiguous data

CPU1

Define a 2-etype basic MPI Datatype.

® Increase its size to 8 etypes.

Shift according to rank to pick out the right 2 etypes.

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 31/ 40

Use the result as the filetype in the file view.

Then gaps are automatically skipped.

MPI-10 File View

LU | B L | D
Y

disp etypes

int MPI_File_set_view(
MPI_File fh,

MPI_Offset disp, /* displacement in bytes from start */
MPI_Datatype etype, /* elementary type */

MPI_Datatype filetype, /* file type; prob different for each proc */
char *datarep, /* ‘native’ or ‘internal’ */

MPI_Info info) /* MPI_INFO_NULL for today */

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 32 / 40

MPI-10 File View

——

S~ .
Filetypes (made up of etypes;
repeat as necessarY)
int MPI_File_set_view(
MPI_File fh,
MPI_Offset disp, /* displacement in bytes from start */
MPI_Datatype etype, /* elementary type */
MPI_Datatype filetype, /* file type; prob different for each proc */
char *datarep, /* ‘native’ or ‘internal’ */
MPI_Info info) /* MPI_INFO_NULL for today */

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 33 / 40

Accessing a noncontiguous file type

MPI_Datatype contig, ftype;

MPI_Datatype etype=MPI_INT;

MPI_Aint extent=sizeof (int)*8; /* in bytes! */

MPI_Offset d=2*sizeof (int)*rank; /* in bytes! */

MPI_Type_contiguous(2, etype, &contig);

MPI_Type_create_resized(contig, 0, extent, &ftype);

MPI_Type_commit (&ftype) ;

MPI_File_set_view(fh, d, etype, ftype, "native",
MPI_INFO_NULL);

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI| October 29, 2021 34 / 40

Accessing a noncontiguous file type

integer :: etype, extent, contig, ftype, ierr

integer (kind=MPI_OFFSET_KIND) :: d

etype=MPI_INT

extent=4%8

d=4*rank

call MPI_TYPE_CONTIGUOUS(2, etype, contig, ierr)

call MPI_TYPE_CREATE_RESIZED(contig, O, extent, ftype, ierr)

call MPI_TYPE_COMMIT(ftype, ierr)

call MPI_FILE_SET_VIEW(fh, d, etype, ftype, "native",
MPI_INFO_NULL, ierr)

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI| October 29, 2021 35 / 40

Overview of data/filetype constructors

Function Creates a ...

MPI_Type_contiguous contiguous datatype

MPI_Type_vector vector (strided) datatype
MPI_Type_indexed indexed datatype
MPI_Type_indexed_block indexed datatype w/uniform block length
MPI_Type_create_struct structured datatype

MPI_Type_create_resized type with new extent and bounds
MPI_Type_create_darray distributed array datatype
MPI_Type_create_subarray n-dim subarray of an n-dim array

Before using the create type, you have to do MPI_Commit.

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 36 / 40

File data representation

There are three possible representations:
® native:

Data is stored in the file as it is in memory: no conversion is performed. No loss in performance, but
not portable.

e internal:

Implementation dependent conversion. Portable across machines with the same MPI implementation,
but not across different implementations.

e external32:
Specific data representation, basically 32-bit big-endian IEEE format.

See MPI Standard for more info. Completely portable, but not the best performance.

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 37 / 40

These have to be given to MPI_File_set_view as strings.

More non-contiguous data: subarrays

What if there's a large 2d matrix that is distributed across processes?

Common special cases of non-contiguous access — specialized functions: MPI_Type_create_subarray

and MPI_Type_create_darray.

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 38 / 40

More non-contiguous data: subarrays

C code:

int gsizes[2]={16,6};

int lsizes[2]={8,3};

int psizes[2]={2,2};

int coords[2]={rank/psizes[0],rank/psizes[0]};

int starts[2]={coords[0]*1lsizes[0],coords[1]*1lsizes[1]};

MPI_Type_create_subarray(2,gsizes,lsizes,starts,MPI_ORDER_C,MPI_INT,&filetype);
MPI_Type_commit (&filetype) ;

MPI_File_set_view(fh,0,MPI_INT,filetype, "native",MPI_INFO_NULL) ;
MPI_File_write_all(fh,local_array,local_array_size,MPI_INT,MPI_STATUS_IGNORE) ;

Tip: MPI_Cart_create can be useful to compute coordinatess for a process.

A

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 39 / 40

Recap

MPI: Basics
Example: 2D Diffusion
Derived Data Types

Application Topology
MPI-10

Good References

o W. Gropp, E. Lusk, and A. Skjellun, Using MPI: Portable Parallel Programming with the
Message-Passing Interface. Third Edition. (MIT Press, 2014).

o W. Gropp, T. Hoefler, R. Thakur, E. Lusk, Using Advanced MPI: Modern Features of the
Message-Passing Interface. (MIT Press, 2014).

e A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel Computing, Second Edition.
(Addison-Wesley, 2003) (A bit old but still reasonable)

* The man pages for various MPl commands.

e http://www.mpi-forum.org/docs/ for MPI standard specification. I
1% I\

Bruno C. Mundim (SciNet HPC Consortium) Advanced Parallel Programming with MPI October 29, 2021 40 / 40

	MPI-IO

