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About This Workshop
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What do you need for this workshop?

A computer with browser and internet connection to attend the lectures.
A Zoom client to connect to the lecture and office hours.
An ssh client to connect to the SciNet Teach cluster.

I Linux and MaxOS: Use the ssh command in the terminal.
I Windows: Use MobaXTerm https://mobaxterm.mobatek.net.

Make sure you can login to the website https://scinet.courses/1200 !
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Workshop structure

MONDAY: A first online lecture over Zoom (you’re here!).
An assignment will be given during the course of the lecture.
You can ask questions:

I in the Zoom chat during and at the end of the lecture.
I in the student forum on the course site.
I and also during:

WEDNESDAY: Zoom office hours.
Submit a solution for the assignment on the course website (deadline is midnight Thursday)
FRIDAY: A last online lecture on Zoom that will address the solution, common mistakes, and
wrap-up.
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Today’s Lecture Outline

MPI Basics Review
Scientific MPI Example: 2D Diffusion Equation
Teach Cluster Access and Assignment
Derived Data Types
Application Topology
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MPI Basics Review
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Distributed Memory: Clusters
Machine Architecture: Clusters, or,
distributed memory machines.
Parallel code: run on separate computers
and communicate with each other.
Usual communication model: “message
passing”.
Message Passing Interface (MPI): Open
standard library interface for message passing,
ratified by the MPI Forum.
MPI Implementations:

I OpenMPI www.open-mpi.org
F SciNet clusters (Niagara or Teach):

module load gcc openmpi
I MPICH2 www.mpich.org

F Niagara: module load intel intelmpi

CPU1

CPU2

CPU3

CPU4
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MPI is a Library for Message Passing

Not built into the compiler.
Function calls that can be made from any compiler, many languages.
Just link to it.
Wrappers: mpicc, mpif90, mpicxx

#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv) {
int rank, size, err;
err = MPI_Init(&argc, &argv);
err = MPI_Comm_size(MPI_COMM_WORLD, &size);
err = MPI_Comm_rank(MPI_COMM_WORLD, &rank);
printf("Hello world from task %d of %d!\n",rank,

size);
err = MPI_Finalize();

}

program helloworld
use mpi
implicit none
integer :: rank, commsize, err
call MPI_Init(err)
call MPI_Comm_size(MPI_COMM_WORLD, commsize, err)
call MPI_Comm_rank(MPI_COMM_WORLD, rank, err)
print *,'Hello world from task',rank,'of',commsize
call MPI_Finalize(err)
end program helloworld
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MPI is a Library for Message Passing
Communication/coordination between tasks
done by sending and receiving messages.
Each message involves a function call from
each of the programs.

CPU1

CPU2

CPU3

CPU4
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MPI is a Library for Message Passing
Three basic sets of functionality:

Pairwise communications via messages
Collective operations via messages
Efficient routines for getting data from
memory into messages and vice versa

CPU1

CPU2

CPU3

CPU4
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Messages

Messages have a sender and a receiver.
When you are sending a message, don’t need
to specify sender (it’s the current processor).
A sent message has to be actively received by
the receiving process.

CPU1 CPU2

count  of  MPI_SOMETYPE

tag
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Messages

MPI messages are a string of length count all
of some fixed MPI type.
MPI types exist for characters, integers,
floating point numbers, etc.
An arbitrary non-negative integer tag is also
included – it helps keep things straight if lots
of messages are sent.

CPU1 CPU2

count  of  MPI_SOMETYPE

tag
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Communicators

MPI groups processes into communicators.
Each communicator has some size – number
of tasks.
Every task has a rank 0..size-1
Every task in your program belongs to
MPI_COMM_WORLD.

MPI_COMM_WORLD:
size = 4, ranks = 0..3

rank 1

rank 2

rank 3

rank 0
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Communicators

One can create one’s own
communicators over the same
tasks.
May break the tasks up into
subgroups.
May just re-order them for
some reason

MPI_COMM_WORLD:
size=4,ranks=0..3

rank 1

rank 2

rank 3

rank 0

new_comm:
size=3,ranks=0..2

rank 2

rank 0

rank 1
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MPI Communicator Basics

Communicator Components
MPI_COMM_WORLD:
Global Communicator
MPI_Comm_rank(MPI_COMM_WORLD,&rank)
Get current task’s rank
MPI_Comm_size(MPI_COMM_WORLD,&size)
Get communicator size
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Different versions of SEND

MPI_Ssend: Standard synchronous send
guaranteed to be synchronous.
routine will not return until the receiver has “picked up”.

MPI_Bsend: Buffered Send
guaranteed to be asynchronous.
routine returns before the message is delivered.
system copies data into a buffer and sends it in due course.
can fail if buffer is full.

MPI_Send (standard Send)
may be implemented as synchronous or asynchronous send.
causes a lot of confusion.

In this class, stick with
MPI_Ssend for clarity and
robustness
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Send and Receive

C
MPI_Status status;
err = MPI_Ssend(sendptr, count, MPI_TYPE, destination, tag, Communicator);
err = MPI_Recv(rcvptr, count, MPI_TYPE, source, tag, Communicator, status);

Fortran
integer status(MPI_STATUS_SIZE)
call MPI_SSEND(sendarr, count, MPI_TYPE, destination, tag, Communicator, err)
call MPI_RECV(rcvarr, count, MPI_TYPE, source, tag, Communicator, status, err)
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MPI: Sendrecv

err = MPI_Sendrecv(sendptr, count, MPI_TYPE, destination, tag,
recvptr, count, MPI_TYPE, source, tag, Communicator, MPI_Status)

A blocking send and receive built together
Let them happen simultaneously
Can automatically pair send/recvs
Why 2 sets of tags/types/counts?
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MPI Non-Blocking Functions: MPI_Isend, MPI_Irecv

Returns immediately, posting request to system to initiate communication.
However, communication is not completed yet.
Cannot tamper with the memory provided in these calls until the communication is completed.
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Nonblocking Sends

Allows you to get work done while message is
in flight.
Must not alter send buffer until send has
completed.
C:

MPI_Isend(void *buf,int count,MPI_Datatype datatype,int dest,int tag,MPI_Comm comm,MPI_Request *request)

FORTRAN:
MPI_ISEND(BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,INTEGER TAG, INTEGER COMM, INTEGER REQUEST,

INTEGER ERROR)
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MPI: Non-Blocking Isend & Irecv

err = MPI_Isend(sendptr, count, MPI_TYPE, destination, tag, Communicator, MPI_Request)
err = MPI_Irecv(rcvptr, count, MPI_TYPE, source, tag, Communicator, MPI_Request)

sendptr/rcvptr: pointer to message
count: number of elements in ptr
MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.
destination/source: rank of sender/receiver
tag: unique id for message pair
Communicator: MPI_COMM WORLD or user created
MPI_Request: Identify comm operations
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MPI Collectives
Reduction:

I Works for a variety of operations (+,*,min,max)
I For example, to calculate the min/mean/max of numbers accross the cluster.

err = MPI_Allreduce(sendptr, rcvptr, count, MPI_TYPE, MPI_Op, Communicator);
err = MPI_Reduce(sendbuf, recvbuf, count, MPI_TYPE, MPI_Op, root, Communicator);

sendptr/rcvptr: pointers to buffers
count: number of elements in ptrs
MPI_TYPE: one of MPI_DOUBLE, MPI_FLOAT, MPI_INT, MPI_CHAR, etc.
MPI_Op: one of MPI_SUM, MPI_PROD, MPI_MIN, MPI_MAX.
Communicator: MPI_COMM_WORLD or user created.
All variants send result back to all processes; non-All sends to process root.
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Collective Operations
Collective

Reductions are an example of a collective operation.
As opposed to the pairwise messages we’ve seen before
All processes in the communicator must participate.
Cannot proceed until all have participated.
Don’t necessarity know what’s ‘under the hood’.

Other MPI Collectives

Broadcast Scatter Gather File I/O

Barriers (don’t!)

All-to-all . . .
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Scientific MPI Example
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Scientific MPI Example

Consider a diffusion equation with an explicit finite-difference, time-marching method.
Imagine the problem is too large to fit in the memory of one node, so we need to do domain
decomposition, and use MPI.
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Discretizing Derivatives

Partial Differential Equations like the diffusion
equation

∂T
∂t

= D
∂2T
∂x2

are usually numerically solved by finite
differencing the discretized values.
Implicitly or explicitly involves interpolating
data and taking the derivative of the
interpolant.
Larger ‘stencils’ → More accuracy.

∂2T
∂x2 ≈

Ti+1 − 2Ti + Ti−1

∆x2

i−2 i−1 i i+2

+1+1 −2

i+1
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Diffusion equation in higher dimensions
Spatial grid separation: ∆x. Time step ∆t.
Grid indices: i, j. Time step index: (n)

1D
∂T
∂t

∣∣∣∣
i
≈

T(n)
i − T(n−1)

i

∆t
∂2T
∂x2

∣∣∣∣
i
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T(n)
i−1 − 2T(n)

i + T(n)
i+1

∆x2

+1+1 −2

2D

+1+1

+1

+1

−4

∂T
∂t

∣∣∣∣
i,j
≈

T(n)
i,j − T(n−1)

i,j

∆t(
∂2T
∂x2 +

∂2T
∂y2

)∣∣∣∣
i,j
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T(n)
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i,j + T(n)
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Stencils and Boundaries
How do you deal with
boundaries?
The stencil juts out, you need
info on cells beyond those
you’re updating.
Common solution:

Guard cells:
I Pad domain with these

guard cells so that stencil
works even for the first
point in domain.

I Fill guard cells with values
such that the required
boundary conditions are
met.

1D

2 30 1 4 5 6

Number of guard cells
ng = 1
Loop from i = ng . . .
N − 2ng .

2D
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Domain decomposition
A very common approach to
parallelizing on distributed
memory computers.
Subdivide the domain into
contiguous subdomains.
Give each subdomain to a
different MPI process.
No process contains the full
data!
Maintains locality.
Need mostly local data, ie.,
only data at the boundary of
each subdomain will need to
be sent between processes.
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Guard cell exchange

In the domain decomposition, the stencils will
jut out into a neighbouring subdomain.
Much like the boundary condition.
One uses guard cells for domain
decomposition too.
If we managed to fill the guard cell with
values from neighbouring domains, we can
treat each coupled subdomain as an isolated
domain with changing boundary conditions.

6 9 10 1185 7

2 30 1 4 5 6

Could use even/odd trick, or sendrecv.
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Diffusion: Had to wait for communications to compute

Could not compute end points without
guardcell data
All work halted while all communications
occurred
Significant parallel overhead.

6 9 10 1185 7

2 30 1 4 5 6
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Diffusion: Had to wait?

But inner zones could have been computed
just fine.
Ideally, would do inner zones work while
communications is being done; then go back
and do end points.

6 9 10 1185 7

2 30 1 4 5 6
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Blocking Communication/Computation Pattern

Sendrecv Sendrecv

ComputationComputation

Sendrecv Sendrecv

ComputationComputation

We have the following sequence of communication
and computation:

The code exchanges guard cells using
Sendrecv

The code then computes the next step.
The code exchanges guard cells using
Sendrecv again.
etc.

We can do better.

Bruno C. Mundim (SciNet HPC Consortium) Advanced Distributed Memory Parallel Programming with MPI October 25, 2021 33 / 69



Non-Blocking Communication/Computation Pattern

Computation Computation

IRecv IRecv

ISendISend

Computation Computation

Computation Computation

IRecv IRecv

ISendISend

Computation Computation

The code start a send of its guard cells using
ISend.
Without waiting for that send’s completion,
the code computes the next step for the inner
cells (while the guard cell message is in flight)
The code then receives the guard cells using
IRecv.
Afterwards, it computes the outer cell’s new
values.
Repeat.

Bruno C. Mundim (SciNet HPC Consortium) Advanced Distributed Memory Parallel Programming with MPI October 25, 2021 34 / 69



2D diffusion with MPI
How to divide the work in a 2D grid?
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Less communication (18 edges).
Harder to program, non-contiguous data to
send, left, right, up and down.

Easier to code, similar to 1d, but with
contiguous guard cells to send up and down.
More communication (30 edges).
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Let’s look at the easiest domain decomposition.

Serial :
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Communication pattern:

Copy upper stripe to upper neighbour bottom guard cell.
Copy lower stripe to lower neighbout top guard cell.
Contiguous cells: can use count in MPI_Sendrecv.
Similar to 1d diffusion.
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Teach Cluster Access and Assignment
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Access to SciNet’s Teach supercomputer
Access to SciNet’s Teach supercomputer

SciNet’s Teach supercomputer is part of the
old GPC system (42 nodes) that has been
repurposed for education and training in
general, and in particular for many of summer
school sessions.
Log into Teach login node, teach01, with
your Compute Canada account credentials or
your lcl_uothpc383sNNNN temporary
account.

$ ssh -Y USER@teach.scinet.utoronto.ca
$ cd $SCRATCH
$ cp -r /scinet/course/mpi/advanced-mpi .
$ cd advanced-mpi
$ source setup

Running computations
On most supercomputer, a scheduler governs
the allocation of resources.
This means submitting a job with a jobscript.
srun: a command that is a resource request
+ job running command all in one, and will
run the command on one (or more) of the
available resources.
We have set aside 34 nodes with 16 cores for
this class, so occasionally, only in very busy
sessions, you may have to wait for someone
else’s srun command to finish.
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Assignment: 2D Diffusion
2D diffusion equation serial code:

$ cd $SCRATCH/advanced-mpi/diffusion2d
$ # source ../setup
$ make diffusion2dc
$ ./diffusion2dc

2D diffusion equation parallel code:
$ make diffusion2dc-mpi-nonblocking
$ # or srun
$ mpirun -np 4 ./diffusion2dc-mpi-nonblocking

Part I: Use MPI derived datatypes instead of
packing and unpacking the data manually.
cp diffusion2dc-mpi-nonblocking.c
diffusion2dc-mpi-nonblocking-datatype.c

Build with make
diffusion2dc-mpi-nonblocking-datatype

Test on 4..9 processors

Part II: Use MPI Cartesian topology routines
to map the 2D cartesian grid of the diffusion
equation domain into a 2D layout of processes.
Get rid of the manually done mapping.
cp
diffusion2dc-mpi-nonblocking-datatype.c
diffusion2dc-mpi-nonblocking-carttopo.c

Build with make
diffusion2dc-mpi-nonblocking-carttopo

Tips

Switch off graphics (in Makefile, change
USEPGPLOT=-DPGPLOT to USEPGPLOT=);
Get familiar with the serial code in 2D and
review the 1D one, if needed.
If you get stuck debugging, try to decrease
the problem size and the number of steps.
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Derived Datatypes
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Motivation

Every message is associated with a datatype.
All MPI data movement functions move data
in some count units of some datatype.
Portability: specifying the length of a
message as a given count of occurrences of a
given datatype is more portable than using
length in bytes, since lengths of given types
may vary from one machine to another.
So far our messages correspond to contiguous
regions of memory: a count of the the basic
MPI datatypes such as MPI_INT or
MPI_DOUBLE was sufficient to describe our
messages.

CPU1 CPU2

count  of  MPI_SOMETYPE

tag
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Motivation

Derived datatypes allow us to specify
noncontiguous areas of memory, such as a
column of an array stored rowwise.
A new datatype might describe, for example,
a group of elements that are separated by a
constant amount in memory, a stride.
Derived datatypes allow arbitrary data layouts
to be serialized into message streams CPU1 CPU2

count  of  MPI_SOMETYPE

tag
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Basic Datatypes for Fortran
MPI provides a rich set of predefined
datatypes.
All basic datatypes in C and Fortran.
Two datatypes specific to MPI:

I MPI_BYTE: Refers to a byte defined
as eight binary digits.

I MPI_PACKED: Rather than create a
new datatype, just assemble a
contiguous buffer to be sent.

Why not use char as bytes?
I Usually represented by

implementations but not required.
For example C for Japanese might
choose 16-bit chars.

I Machines might have different
character sets in heterogeneous
environment.

MPI Datatype Fortran Datatype
MPI_BYTE
MPI_CHARACTER CHARACTER
MPI_COMPLEX COMPLEX
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_INTEGER INTEGER
MPI_LOGICAL LOGICAL
MPI_PACKED
MPI_REAL REAL
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Basic Datatypes for C

MPI Datatype C Datatype
MPI_CHAR signed char
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_WCHAR wchar_t
MPI_SHORT short
MPI_INT int
MPI_LONG long
MPI_LONG_LONG_INT long long
MPI_SIGNED_CHAR signed char

MPI Datatype C Datatype
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long
MPI_UNSIGNED_LONG_LONG unsigned long long
MPI_C_COMPLEX float _Complex
MPI_C_DOUBLE_COMPLEX double _Complex
MPI_C_LONG_DOUBLE_COMPLEX long double _Complex
MPI_PACKED
MPI_BYTE
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Datatype Concepts

Basic definitions:
I Datatype is an object consisting of

a sequence of the basic datatypes
and displacements, in bytes, of
each of these datatypes.

I Displacements in bytes are relative
to the buffer the datatype
describes.

How does MPI describe a general
datatype?

I MPI represents a datatype as a
sequence of pairs of basic types
and displacements, a typemap.

Typemap:

Typemap = {(type0, disp0), ..., (typen−1, dispn−1)}

I For example, type MPI_INT represented by (int, 0).
I Displacements tell MPI where to find the bits.

Type signature: list of the basic datatypes in a datatype.

Typesignature = {type0, ..., typen−1}

I It controls how data items are interpreted when sent or
received.
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Datatype Concepts (Cont.)

Component Displacement Lower bound (lb) is the location of the first byte described by the datatype:

lb(Typemap) = min
j

(dispj)

Component Displacement Upper bound (ub) is the location of the last byte described by the
datatype:

ub(Typemap) = max
j

(dispj + sizeof (typej)) + pad

I Where sizeof operator returns the size of the basic datatype in bytes.
Extent is the difference between these two bounds:

extent(Typemap) = ub(Typemap)− lb(Typemap)

I ub is possibly increased by pad to satisfy alignment requirements.
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Data Alignment

Both C and Fortran require that the basic
datatypes be properly aligned:

I The locations of an integer or a
double-precision value occur only where
allowed.

I Each implementation of these languages
defines what is allowed.

I Most common: the address of an item in
bytes is a multiple of the length of that item
in bytes.

I For example, if an int takes four bytes, then
the address of an int must be a multiple of
the length of that item in bytes: evenly
divisible by four.

Data aligment requirement reflects in the
definition of extent of a MPI datatype.

Example of a typemap on a computer that
requires int’s to be aligned on 4-byte
boundaries:

{(int, 0), (char, 4)}

lb = min(0, 4) = 0

ub = max(0 + 4, 4 + 1) = 5
I Next int can only be placed with

displacement eight from the int in the
typemap. Pad in this case is three.

I Therefore, this typemap’s extend on this
computer is eight.
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Datatype Information
MPI routines to retrieve information about MPI datatypes:

MPI_Type_get_extent
int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb, MPI_Aint *extent)

Get the lower bound and extent for a datatype:
I datatype: handle on datatype to get information on.
I lb: lower bound returned and stored as MPI_Aint, an integer type that can hold an arbitrary address.
I extent: the returned extent of the datatype. Previous example extent was 8 bytes.

MPI_Type_size
int MPI_Type_size(MPI_Datatype datatype, int *size)

Get the number of bytes or the size of a datatype:
I datatype: handle on datatype to get information on.
I size: datatype size in bytes. Previous example size was 5 bytes.
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Datatype Constructors
Problem: Typemap is a general way of
describing an arbitrary datatype, but not
convenient for a large number of entries.
Solution: MPI provides different ways to
create datatypes without explicitly
constructing the typemap:

I Contiguous: It produces a new datatype by
making count copies of an old one.
Displacements incremented by the extent of
the oldtype.

I Vector: Like contiguous but allows for
regular gaps in displacements. Elements
separated by multiples of the extent of the
input datatype.

I Hvector: Like vector, but elements are
separated by a number of bytes.

More sophisticated constructors:
I Indexed: Array of displacements provided.

Displacements measured in terms of the
extent of the input datatype.

I Hindexed: Like indexed, but displacements
measured in bytes.

I Struct: Fully general. Input is the typemap,
if input are basic MPI datatypes.
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Datatype Constructors (Cont.)
MPI_Type_contiguous
int MPI_Type_contiguous(int count, MPI_Datatype oldtype, MPI_Datatype *newtype)

Simplest datatype constructor, which allows replication of a oldtype datatype into contiguous
locations:

I count: replication count (nonnegative integer).
I oldtype: old datatype handle.
I newtype: new datatype handle.

Example: if original datatype (oldtype) has typemap:

{(int, 0), (double, 8)}

then:
MPI_Type_contiguous(2, oldtype, &newtype);

produces a datatype newtype with typemap:

{(int, 0), (double, 8), (int, 16), (double, 24)}
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Datatype Constructors (Cont.)

MPI_Type_vector
int MPI_Type_vector(int count, int blocklength, int stride, MPI_Datatype oldtype, MPI_Datatype *newtype)

Allows replication of a oldtype datatype into locations of equally spaced blocks. Each block is
obtained by concatenating blocklength copies of the old datatype:

I count: number of blocks (nonnegative integer).
I blocklength: number of elements in each block (nonnegative integer).
I stride: number of elements between start of each block.

Very useful for Cartesian arrays.
Example: if original datatype (oldtype) has typemap: (double, 0) with extent 8, then:

MPI_Type_vector(3, 2, 4, oldtype, &newtype);

produces a datatype newtype with extension 3 x 4 x 8 = 96 bytes and typemap:

{(double, 0), (double, 8), (double, 32), (double, 40), (double, 64), (double, 72)}
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Datatype Constructors (Cont.)

MPI_Type_create_hvector
int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates a vector (strided) data type with offset in bytes.
Useful for composition, for example, vector of structs.

MPI_Type_create_indexed_block
int MPI_Type_create_indexed_block(int count, int blocklength, const int array_of_displacements[],

MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates an indexed data type with the same block length for all blocks.
Useful for retrieving irregular subsets of data from a single array.

I blocklength = 2
I array_of_displacements = {0, 5, 8, 13, 18}
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Datatype Constructors (Cont.)
MPI_Type_indexed
int MPI_Type_indexed(int count, const int array_of_blocklengths[],

const int array_of_displacements[], MPI_Datatype oldtype,
MPI_Datatype *newtype)

Creates an indexed datatype, where each block can contain a different number of oldtype copies.
I array_of_blocklengths = {1, 1, 2, 1, 2, 1}
I array_of_displacements = {0, 3, 5, 9, 13, 17}

MPI_Type_create_struct
int MPI_Type_create_struct(int count, int array_of_blocklengths[],

const MPI_Aint array_of_displacements[], const MPI_Datatype array_of_types[],
MPI_Datatype *newtype)

Creates a structured data type.
Useful for retrieving virtually any data layout in memory.

I array_of_blocklengths = {1, 1, 2, 1, 2, 1}
I array_of_displacements = {0, 3, 5, 9, 13, 17}
I array_of_types = { MPI_INT, MPI_DOUBLE, MPI_INT, MPI_INT, MPI_INT }
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Datatype Constructors (Cont.)
MPI_Type_create_subarray
int MPI_Type_create_subarray(int ndims, const int array_of_sizes[],

const int array_of_subsizes[], const int array_of_starts[],
int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

Creates a data type describing an n-dimensional subarray of an n-dimensional array.

Create, Commit, Duplicate, and Free
Once a type is created with one of the constructors above, it must be committed to the system
before use.

I Use MPI_Type_commit.
I This allows the system to hopefully perform heavy optimizations.

MPI_Type_dup
I Duplicates a type.

MPI_Type_free
I Free MPI resources for datatypes.
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Application Topology
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Introduction to Application Topology

MPI offers a facility, called process
topology, to attach information about the
communication relationships between
processes to a communicator.
Programmer specifies the topology once
during setup and then reuse it in different
parts of the code.
User-specified topology matches application
communication patterns.

Definitions
Topology of the computer, or interconnection
network, is the description of how the
processes in a parallel computer are
connected to one another.
Virtual or application topology is the pattern
of communication amongst the processes.
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Process Mapping
Good choice of mapping depends on the details of the underlying hardware.
Only the vendors knows the best way to fit the application topologies into the machine topology.
They optimize through the implementation of MPI topology functions.
MPI does not provide the programmer any control over these mappings.

Different ways to map a set of processes to a 2-dimensional grid.
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Example: Matrix Partitioning

2-dimensional rank numbering system provides a
clearer representation of submatrices relationships.
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Graph and Cartesian Topologies

MPI has the task of deciding how to assign processes to each part of the decomposed domain.
MPI provides the service of handling assignment of processes to regions. It provides two types of
topology routines to address the needs of different data topological layouts:

Cartesian Topology
It is a decomposition of the application processes in the natural coordinate directions, for example,
along x and y directions.

Graph Topology
It is the type of virtual topology that allows general relationships between processes, where processes
are represented by nodes of a graph.
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MPI Cartesian Topology Functions

MPI provides routines for dealing with cartesian topologies:

MPI_Cart_create: Create a Cartesian
topology.
MPI_Cart_coords: Determine process
coordinates in Cartesian topology given rank
in group.
MPI_Cart_rank: Determines process rank in
communicator given Cartesian location.
MPI_Cart_sub: Partitions a communicator
into subgroups, which form lower-dimensional
Cartesian subgrids.

MPI_Cart_get: Retrieves Cartesian topology
information associated with a communicator.
MPI_Cartdim_get: Retrieves Cartesian
topology information associated with a
communicator: number of dimensions.
MPI_Cart_shift: Returns the shifted source
and destination ranks, given a shift direction
and amount.
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MPI Cartesian Topology Functions (Cont.)
MPI_Cart_create
int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[],

const int periods[], int reorder, MPI_Comm *comm_cart)

It returns a a handle to a new communicator to which the Cartesian topology information is attached.
If reorder = false then the rank of each process in the new group is identical to its rank in the old
group.
Otherwise it may reorder to choose a good embedding of the virtual topology onto the physical
machine.

I comm_old: handle to input communicator.
I ndims: number of dimensions of Cartesian grid.
I dims: integer array of size ndims specifying the number of

processes in each dimension.
I periods: logical array of size ndims specifying whether the grid is periodic (true) or not (false) in each

dimension.
If the total size of the Cartesian grid is smaller than the size of the group of comm, then some
processes are returned MPI_COMM_NULL.
The call is erroneous if it specifies a grid that is larger than the group size.
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MPI Cartesian Topology Functions (Cont.)

This code snippet uses MPI_Cart_create to
remap the process ranks from a linear
ordering (0, 1,. . . ,5) to 2-dimensional array of
3 rows by 2 columns ((0,0),(0,1),. . . ,(2,1)).
We are able to assign work to the processes
by their grid topology instead of their linear
process rank.
We imposed periodicity on the first dimension.
This means any reference beyond the first or
last entry of the columns it cycles back to the
last and first entry, respectively.
Any reference to column index outside the
range returns MPI_PROC_NULL.

MPI_Cart_create (code snippet)
#include "mpi.h"
MPI_Comm old_comm, new_comm;
int ndims, reorder, periods[2], dim_size[2];
old_comm = MPI_COMM_WORLD;
ndims = 2; /* 2-D matrix/grid */
dim_size[0] = 3; /* rows */
dim_size[1] = 2; /* columns */
periods[0] = 1; /* row periodic

(each column forms a ring) */
periods[1] = 0; /* columns nonperiodic */
reorder = 1; /* allows processes reordered

for efficiency */
MPI_Cart_create(old_comm, ndims, dim_size,

periods, reorder, &new_comm);
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MPI Cartesian Topology Functions (Cont.)

Messages are still sent to and received from process’s ranks.
MPI provides routines to map or convert ranks to cartesian coordinates and vice-versa:

MPI_Cart_coords
int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

It provides a mapping of ranks to Cartesian coordinates.
I rank: rank of a process within group of comm.
I maxdims: length of vector coords in the calling program.
I coords: Integer array of size ndims (defined by MPI_Cart_create call) containing the Cartesian

coordinates of specified process.

MPI_Cart_rank
int MPI_Cart_rank(MPI_Comm comm, int coords[], int *rank)

It translates the logical process coordinates to process ranks.
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MPI Cartesian Topology Functions (Cont.)
MPI_Cart_coords (code snippet)

MPI_Cart_create(old_comm, ndims, dim_size, periods, reorder, &new_comm);
if(rank == 0) { /* only want to do this on one process */
for (rank=0; rank‹p; rank++) {
MPI_Cart_coords(new_comm, rank, ndims, &coords);
printf("%d, %d, %d\n ",rank, coords[0], coords[1]);

}
}

MPI_Cart_rank (code snippet)

MPI_Cart_create(old_comm, ndims, dim_size, periods, reorder, &new_comm);
if(rank == 0) { /* only want to do this on one process */
for (i=0; i‹nv; i++) {
for (j=0; j‹mv; j++) {
coords[0] = i;
coords[1] = j;
MPI_Cart_rank(new_comm, coords, &rank);
printf("%d, %d, %d\n",coords[0],coords[1],rank);

}
}

}
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MPI Cartesian Topology Functions (Cont.)
MPI_Cart_sub
int MPI_Cart_sub(MPI_Comm comm, const int remain_dims[], MPI_Comm *comm_new)

It partitions a communicator into subgroups, which form lower-dimensional Cartesian subgrids.
It builds for each subgroup a communicator with the associated subgrid Cartesian topology.

I remain_dims: logical vector indicating if the ith dimension corresponding to the ith entry of
remain_dims, is kept in the subgrid (true) or is dropped (false).

MPI_Cart_sub (code snippet)

MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder, &comm2D);
MPI_Comm_rank(comm2D, &id2D);
MPI_Cart_coords(comm2D, id2D, ndim, coords2D);
/* Create 1D row subgrids */
belongs[0] = 0;
belongs[1] = 1; /* this dimension belongs to subgrid */
MPI_Cart_sub(comm2D, belongs, &commrow);
/* Create 1D column subgrids */
belongs[0] = 1; /* this dimension belongs to subgrid */
belongs[1] = 0;
MPI_Cart_sub(comm2D, belongs, &commcol);
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MPI Cartesian Topology Functions (Cont.)
It is common on large programs to create the cartesian topology with associated communicator in
one routine while being used in another.
The follow two functions help retrieving information about these communicators:

MPI_Cartdim_get
int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

It retrieves the number of dimensions from a communicator with Cartesian structure.

MPI_Cart_get
int MPI_Cart_get(MPI_Comm comm, int maxdims, int dims[], int periods[],

int coords[])

It retrieves information from a communicator with Cartesian topology:
I maxdims: Length of vectors dims, periods, and coords in the calling program.
I dims: Number of processes for each Cartesian dimension.
I periods: Periodicity for each Cartesian dimension.
I coords: Coordinates of the calling process in Cartesian structure.

Bruno C. Mundim (SciNet HPC Consortium) Advanced Distributed Memory Parallel Programming with MPI October 25, 2021 66 / 69



MPI Cartesian Topology Functions (Cont.)

MPI_Cart_shift
int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

It returns the shifted source and destination ranks, given a shift direction and amount.
I direction: Coordinate dimension of shift, i.e., the coordinate whose value is modified by the shift.
I disp: Displacement ( > 0: upward shift, < 0: downward shift).
I rank_source: Rank of source process.
I rank_dest: Rank of destination process.

A MPI_Sendrecv operation is likely to be used along a coordinate direction to perform a shift of data.
I As input, it takes the rank of a source process for the receive, and the rank of a destination process for

the send.
I MPI_Cart_shift provides MPI_Sendrecv with the above identifiers.
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MPI Cartesian Topology Functions (Cont.)
MPI_Cart_shift (code snippet)

/* Create Cartesian topology for processes */
ndim = 2; /* number of dimensions */
dims[0] = nrow; /* number of rows */
dims[1] = mcol; /* number of columns */
period[0] = 1; /* cyclic in this direction */
period[1] = 0; /* not cyclic in this direction */
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder,
&comm2D);
MPI_Comm_rank(comm2D, &me);
MPI_Cart_coords(comm2D, me, ndim, &coords);
displ = 1; /* shift by 1 */
index = 0; /* shift along the 1st index (out of 2) */
MPI_Cart_shift(comm2D, index, displ, &source0, &dest0);
index = 1; /* shift along the 2nd index (out of 2) */
MPI_Cart_shift(comm2D, index, displ, &source1, &dest1);

MPI_Cart_shift is used to obtain the source and destination rank numbers of the calling process.
There are two calls to MPI_Cart_shift, the first shifting along columns, and the second along rows.
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Conclusion
Recap

MPI Basics Review
Scientific MPI Example: 2D Diffusion Equation
Derived Data Types
Application Topology

Good References
W. Gropp, E. Lusk, and A. Skjellun, Using MPI: Portable Parallel Programming with the
Message-Passing Interface. Third Edition. (MIT Press, 2014).
W. Gropp, T. Hoefler, R. Thakur, E. Lusk, Using Advanced MPI: Modern Features of the
Message-Passing Interface. (MIT Press, 2014).
A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel Computing, Second Edition.
(Addison-Wesley, 2003) (A bit old but still reasonable)
The man pages for various MPI commands.
http://www.mpi-forum.org/docs/ for MPI standard specification.
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